Peltier Devices: Thermoelectric Coolers and Power Generators

Thermoelectric couples are solid-state devices capable of generating electrical power from a temperature gradient, known as the Seebeck effect, or converting electrical energy into a temperature gradient, known as the Peltier effect.

A typical thermoelectric module is composed of two ceramic substrates that serve as a housing and electrical insulation for P-type and N-type (typically Bismuth Telluride) elements between the substrates. Heat is absorbed at the cold junction by electrons as they pass from a low energy level in the p-type element, to a higher energy level in the n-type element. At the hot junction, energy is expelled to a thermal sink as electrons move from a high energy element to a lower energy element. A module contains several P-N couples that are connected electrically in series and thermally in parallel.

To assist the thermal designer in modeling Peltier modules (thermoelectric generators or coolers), CRTech's tool suite provides built in routines for modeling either standard Bismuth Telluride coolers or modules manufactured from alternative semiconductor materials. The family of TEC and TEG tools provide the designer the ability to model single stage or multi-stage devices, and calculate valuable sizing information regarding thermoelectric performance.

Visit our support forum to download a sample model.

Thermal DesktopĀ® Model of a Thermoelectric Cooler

Additional Resources

Choking and High-speed Flow

Tuesday December 17th, 2pm MST

When flow velocities get big, things gets interesting. Above Mach=0.1, the bulk fluid "sees" a wall that is warmer than the structural temperature due to deceleration within the boundary layer. Above Mach=0.3, kinetic energy changes cease to be negligible. And of course, nothing moves faster than Mach=1.0 for internal flow. When you also add in changes in flow area, or changes in phase ... well, let's just say that doesn't simplify anything.

This webinar will introduce you to the phenomena involved, with a focus on the FloCAD modeling parameters available and their associated correlations and assumptions.

Click here to register

Turbomachinery and Rotating Passages (Secondary Flows)

Thursday December 19th, 2pm MST

Are turbomachines a component in your system, and you'd like to treat them as a "black box"?

Or are they the focus of your work, and the cycle is just a boundary condition to you?

Either way, this webinar will have something to offer you. Each type of turbomachine will be covered: pumps and fans, positive and variable displacement compressors, and turbines (whether gas or hydraulic). Methods for modeling systems like turbochargers and turbopumps will be introduced. Tools for handling spinning flow passages and rotating cavities will be presented.

Click here to register

Starting in 2020, we will begin offering Introduction to Thermal Desktop and Introduction to RadCAD as either in-person training or online training, alternating between online and in-person every three months. The training uses lectures and demonstrations to introduce you to basic Thermal Desktop and RadCAD usage. Hands-on tutorials provide practice building models and interpreting results (tutorials are completed by students outside of the online class time).
The next training class will be an online format in January 2020:
  • Introduction to Thermal Desktop (and SINDA) - A three-part series on January 14, 16, and 21 from 9am to 12pm, Mountain time
  • Introduction to RadCAD - January 23 from 9am to 12pm, Mountain time
For up-to-date schedules, fees, and policies, visit our Product Training page. To register for the class above, complete our registration form and select "Online" for the Training Format.
If you are interested in product training for your company based on your schedule, please contact us to obtain a quote for training between 8-12 attendees. We can come to your facility or the lectures can be presented online. Descriptions of the available classes can be found in our course catalog.
To keep up with our training opportunities, take a look at our new Events and Training Calendar.