Rocket Nozzle Plume Heating

Rocket Plume Heat Transfer

Thermal Desktop® is commonly used for thermal analyses of spacecraft and propulsion systems. Less frequently, these tools are used for calculating the temperatures in supersonic exhaust nozzles, such as those in rockets or thrusters.

The temperature of the nozzle wall is an important aspect of rocket design. The exhaust-gas temperature typically exceeds the maximum allowable temperature of the nozzle wall material. The ability to estimate the wall temperature allows the design of a cooling system.

Four types of cooling systems can be modeled in Thermal Desktop: heat sink; thermal radiation; even regenerative (using FloCAD®). A difficult part of modeling the cooling system is approximating the heat transfer from the plume to the nozzle wall. The convective film coefficient can be estimated through a number of methods (Bartz equation, TDK boundary layer technique, etc); the coefficient is highly dependent on the axial location within the nozzle.

Rocket nozzle segments

    C&R Thermal Desktop® Model of a Radiating Nozzle

 

The steady-state solution is presented below. Note the increased temperatures on the front right side of the nozzle caused by variation in the heat transfer coefficient, called streaking. The radiating section of the nozzle shows varying wall temperatures as a result of the changing heat transfer coefficient.

When compared to the actual system, the convective heat fluxes for the radiating portion of the nozzle are underestimated by about 20%. These are reasonable results based on simplification of the geometry (no structural reinforcements were included) and assumptions made within the fluid properties and equilibrium reactions. The correction factor mentioned above could be adjusted to remove this error or provide a safety factor: a key benefit of model parameterization.

Rocket nozzle temperature results with streaking

   Steady-State Results of Plume Convection in a Radiating Nozzle Using the Bartz Equation with Streaking

 

Expansions of the model could be:

  • Adding regenerative cooling in place of the fixed-temperature boundary condition
  • Adding surfaces representing the throat (a torus, perhaps) and the combustion chamber
  • Adding material properties to the inner wall of the nozzle or throat to evaluate recession of the material
  • Adding a second, concentric surface around the nozzle and mapping solid elements between the surfaces to form a heat sink nozzle
  • Mapping the results to a NASTRAN or ANSYS structural FE model

 

Choking and High-speed Flow

Tuesday December 17th, 2pm MST

When flow velocities get big, things gets interesting. Above Mach=0.1, the bulk fluid "sees" a wall that is warmer than the structural temperature due to deceleration within the boundary layer. Above Mach=0.3, kinetic energy changes cease to be negligible. And of course, nothing moves faster than Mach=1.0 for internal flow. When you also add in changes in flow area, or changes in phase ... well, let's just say that doesn't simplify anything.

This webinar will introduce you to the phenomena involved, with a focus on the FloCAD modeling parameters available and their associated correlations and assumptions.

Click here to register

Turbomachinery and Rotating Passages (Secondary Flows)

Thursday December 19th, 2pm MST

Are turbomachines a component in your system, and you'd like to treat them as a "black box"?

Or are they the focus of your work, and the cycle is just a boundary condition to you?

Either way, this webinar will have something to offer you. Each type of turbomachine will be covered: pumps and fans, positive and variable displacement compressors, and turbines (whether gas or hydraulic). Methods for modeling systems like turbochargers and turbopumps will be introduced. Tools for handling spinning flow passages and rotating cavities will be presented.

Click here to register

Starting in 2020, we will begin offering Introduction to Thermal Desktop and Introduction to RadCAD as either in-person training or online training, alternating between online and in-person every three months. The training uses lectures and demonstrations to introduce you to basic Thermal Desktop and RadCAD usage. Hands-on tutorials provide practice building models and interpreting results (tutorials are completed by students outside of the online class time).
 
The next training class will be an online format in January 2020:
  • Introduction to Thermal Desktop (and SINDA) - A three-part series on January 14, 16, and 21 from 9am to 12pm, Mountain time
  • Introduction to RadCAD - January 23 from 9am to 12pm, Mountain time
For up-to-date schedules, fees, and policies, visit our Product Training page. To register for the class above, complete our registration form and select "Online" for the Training Format.
 
If you are interested in product training for your company based on your schedule, please contact us to obtain a quote for training between 8-12 attendees. We can come to your facility or the lectures can be presented online. Descriptions of the available classes can be found in our course catalog.
 
To keep up with our training opportunities, take a look at our new Events and Training Calendar.