Two-Phase Flow

The Most Comprehensive Two-Phase Thermohydraulic Analyzer Available

CRTech's fluid modeling module was designed right from the start to handle the peculiarities of two-phase flows along with the complexities of transitioning between single-phase and two-phase. In fact, its development was initiated specifically to avoid the shortcomings of single-phase analyzers that had been retrofitted to adapt to two-phase problems.

Combined with the heat transfer capabilities that CRTech's software provides and the CAD-based interface of FloCAD® (a module of Thermal Desktop®), and the unique capabilities such as parametric analyses, optimization, calibration, and statistical design, CRTech's two-phase flow software is truly in a class by itself.

Download the Two-Phase Brochure

Recorded Videos

Two-Phase Flow CapabilitiesDepliction of Flow Regime Mapping and Slip Flow

  • Complete thermodynamics: phases appear and disappear as conditions warrant
  • Two-phase heat transfer correlations built-in or user-defined
  • Built-in options to support pool boiling and quasi-stagnant convection
  • Two-phase pressure drop correlations built-in or user-defined
  • Automatic flow regime mapping
  • From quasi-steady homogeneous equilibrium to fully transient two-fluid modeling
  • Optional slip flow modeling (separate phasic momentum equations)
  • Optional nonequilibrium transients
    • Complete separation of phases
    • Separate phasic energy and mass equations
  • Metastable throat states in orifices and cavitating venturis
  • Flat-front modeling methods (minimal mixing of phases) for purging, priming
  • Capillary modeling tools for static or vaporizing wicks
  • Tracking of liquid surfaces in complex tanks and vessels

Two-Phase Mixture Capabilities

  • Mixtures of up to 26 liquids and/or gases
  • Optional condensible/volatile component in mixture, including effects such as diffusion-limited condensation
  • Optional dissolution of any number of gaseous solutes into any number of liquid solvents, including homogeneous nucleation modelsCondensing in the Presence of Noncondensible Gas

Sample Industries

  • Automotive (climate control, transmissions, fuel/air)
  • Electronics (liquid cooling including immersion cooling, condensation on surfaces)
  • Aerospace (thermal management, cryogenics, propulsion, ECLSS)
  • Aircraft (air conditioning, fuel/air including flow within multiple fuel tank bays)
  • Energy Systems (BWR, Rankine cycle power plants)
  • Petrochemical and Pharmaceutical (gas transport, steam injection, two-phase processes)

Sample Applications

  • Condenser, evaporator, and boiler sizing and simulation
  • Vapor compression and Rankine cycle analyses, including dynamic responses
  • Throttling processes, including Joule-Thomson cooling with two-phase outlets
  • Loop heat pipe (LHP) and capillary pumped loop (CPL) design and simulation
  • Two-phase thermosyphon simulation, whether loops or counterflow
  • Integrated analysis of cryogenic systems and dewars, thermodynamic vents and vapor-cooled shields, anti-geyser lines, pressurant systems, thermally stratified tanks, and turbomachinery cool-down
  • Gas storage and distribution systems including the effects of condensation
  • Fuel/air systems, including partially filled complex vessels
  • Waterhammer and other fast transient effects including flashing, column separation, chugging and other oscillations in two-phase lines
  • Pressurized fire retardant delivery systems
  • Condensing air heat exchangers and wet air psychrometrics, including condensation on electronics
  • Fuel cells and support equipment

Choking and High-speed Flow

Tuesday December 17th, 2pm MST

When flow velocities get big, things gets interesting. Above Mach=0.1, the bulk fluid "sees" a wall that is warmer than the structural temperature due to deceleration within the boundary layer. Above Mach=0.3, kinetic energy changes cease to be negligible. And of course, nothing moves faster than Mach=1.0 for internal flow. When you also add in changes in flow area, or changes in phase ... well, let's just say that doesn't simplify anything.

This webinar will introduce you to the phenomena involved, with a focus on the FloCAD modeling parameters available and their associated correlations and assumptions.

Click here to register

Turbomachinery and Rotating Passages (Secondary Flows)

Thursday December 19th, 2pm MST

Are turbomachines a component in your system, and you'd like to treat them as a "black box"?

Or are they the focus of your work, and the cycle is just a boundary condition to you?

Either way, this webinar will have something to offer you. Each type of turbomachine will be covered: pumps and fans, positive and variable displacement compressors, and turbines (whether gas or hydraulic). Methods for modeling systems like turbochargers and turbopumps will be introduced. Tools for handling spinning flow passages and rotating cavities will be presented.

Click here to register

Starting in 2020, we will begin offering Introduction to Thermal Desktop and Introduction to RadCAD as either in-person training or online training, alternating between online and in-person every three months. The training uses lectures and demonstrations to introduce you to basic Thermal Desktop and RadCAD usage. Hands-on tutorials provide practice building models and interpreting results (tutorials are completed by students outside of the online class time).
 
The next training class will be an online format in January 2020:
  • Introduction to Thermal Desktop (and SINDA) - A three-part series on January 14, 16, and 21 from 9am to 12pm, Mountain time
  • Introduction to RadCAD - January 23 from 9am to 12pm, Mountain time
For up-to-date schedules, fees, and policies, visit our Product Training page. To register for the class above, complete our registration form and select "Online" for the Training Format.
 
If you are interested in product training for your company based on your schedule, please contact us to obtain a quote for training between 8-12 attendees. We can come to your facility or the lectures can be presented online. Descriptions of the available classes can be found in our course catalog.
 
To keep up with our training opportunities, take a look at our new Events and Training Calendar.