Automotive Turbocharger

Turbocharged Internal Combustion (IC) Engine Model

Open the waste gate too slowly, or inject gases from an EGR too quickly, and the compressor will surge, overloading the intercooler with warmer air without a corresponding increase in pressure (not to mention noise).  Open the waste gate too quickly, or fail to get exhaust gases to the turbine fast enough, and the boost lags and the compressor might even choke when it fails to meet a sudden engine demand.

And those are just some of the transient interactions between the turbocharger and the engine. Before you can get to that point, you have to first design a compressor, turbine, and intercooler that are well matched to the engine over a wide range of operating conditions, probably assuming perfect or instantaneous controls as a starting point.

Two sample FloCAD models were built to explore both

  • short time-scale events such as pressure waves within intake and exhaust runners (Detailed-level, applicable for valve or control system stability investigations), and
  • long time-scale events such as boost lag (System-level, including steady-state solutions for rapid sizing).

These models illustrate key program features and capabilities, but they may also be used as templates for other engine and compressor/turbine design studies.

A library of six turbine and five compressor designs was constructed as part of these models, and the development of those turbomachine designs is also summarized.

Click here to download this sample from our support forum

The development of this sample model spawned of another IC Engine sample model designed to explore fast‐transient interactions within an engine.

 

Chart of Turbocharger Shaft Speed Lagging a Transient Engine Acceleration

Turbocharger Shaft Speed Lagging a Transient Engine Acceleration

 

Chart of Waste-gate and Pop-off Valve Responses to the Engine Acceleration Event

Waste-gate and Pop-off Valve Responses to the Engine Acceleration Event

 

Parametric Sweeps of Net Torque on Turbocharger Shaft to Find Steady Operating Points

Parametric Sweeps of Net Torque on Turbocharger Shaft to Find Steady Operating Points.

 

Postprocessed Sinaps® Diagram showing Temperatures and Flows for Detailed Model

Postprocessed 2D-sketch Mode FloCAD® Diagram showing Temperatures and Flows for Detailed Model

 

Chart of Pressures in the Intake and Exhaust Systems During One cam shaft Revolution

Pressures in the Intake and Exhaust Systems (for Cylinder #1, 3000 rpm) During One cam shaft Revolution (TDC at left, center, and right of plot)

 

Vapor Compression Cycles

Tuesday March 10th, 2pm MST

This webinar explains how the toolbox approach of Thermal Desktop and FloCAD can be used to design and simulate vapor compression cycles at various levels of detail. Applications include heat pumps, automotive climate control, and refrigeration systems.

Click here to register

Working Fluid Mixtures

Thursday March 12th, 2pm MST

Working fluid mixtures can be as simple as air and water. Or as complex as ... well, air and water.

"Air" might be a simple perfect gas or a collection of real gases ... itself a mixture. "Water" might be a simple nonvolatile approximation of liquid water, or it might be a volatile liquid.

This webinar discusses mixture types, and repercussions such as pressure and temperature range limits. It illustrates both how to set initial conditions and how to determine what is going on in results.

Click here to register