Line Chilldown

Line Chilldown Using Liquid Hydrogen and Liquid Nitrogen

This validation case compares SINDA/FLUINT and FloCAD® predictions with a 1966 test by the National Bureau of Standards (NBS, now National Institute of Standards and Technology, NIST). In the NBS tests, a pressurized dewar containing either LN2 or LH2 was isolated from an empty 200ft (61m) line (open to the atmosphere) by a valve. At time zero, the valve between the dewar and the line was opened, and cryogenic liquid was allowed to flow until the line was completely full and liquid was discharged from open end of the pipe.

Test Set-up

Comparison with Test Data

Liquid (Normal) Hydrogen, Comparison with Figure 7

Differences between parahydrogen and normal hydrogen are explored, since the exact composition of the hydrogen is unknown. The importance of uncertainties in heat transfer and pressure drop correlations, copper alloy properties (also unknown), dewar pressure, and even the roughness and manufacturing tolerance of the tubing is explored. This study demonstrates automated calibration to test data, and investigation of sensitivities.

Click here to fetch the Cryogenic Cooldown Validation from our User Forum

Download the full Line Chilldown Validation report

See also LNG chilldown of a flexible composite hose

Thermal Desktop, RadCAD, and TD Direct in-class training

Date: September 19-22, 2017, 8:00 a.m. to 5:00 p.m., daily
Location: Lakewood, CO

CRTech will be hosting introductory training for Thermal Desktop, RadCAD and TD Direct. Lecture and hands-on tutorials introduce attendees to basic Thermal Desktop and RadCAD usage and allow practice building models and interpreting results. The class will also introduce students to SpaceClaim direct modeling CAD interface and advanced meshing tools in TD Direct.

Daily Schedule

Day 1 and 2: Introduction to SINDA and Thermal Desktop
Day 3: Introduction to RadCAD
Day 4: Introduction to TD Direct
 

To learn more about this class and to register, visit our Training Page.