Thermoelectric couples are solid-state devices capable of generating electrical power from a temperature gradient (known as the Seebeck effect) or converting electrical energy into a temperature gradient (known as the Peltier effect). Thermoelectric coolers, being solid state devices, have no moving parts which makes them inherently reliable and ideal for cooling components in a system sensitive to mechanical vibration. The ability to use TECs to heat as well as cool makes them suitable for applications requiring temperature stabilization of a device over a specified temperature range.
SINDA/FLUINT (Ref 1-7) is the NASA-standard heat transfer and fluid flow analyzer for thermal control systems. Because of its general formulation, it is also used in other aerospace specialties such as environmental control (ECLSS) and liquid propulsion, and in terrestrial industries such as electronics packaging, refrigeration, power generation, and transportation industries.
This paper describes revolutionary advances in SINDA/FLUINT, the NASA-standard heat transfer and fluid flow analyzer, changing it from a traditional point-design simulator into a tool that can help shape preliminary designs, rapidly perform parametrics and sensitivity studies, and even correlate modeling uncertainties using available test data.
Over the past 15 years, the industry standard tool for thermal analysis, SINDA, has been expanded to include advanced thermodynamic and hydrodynamic solutions (“FLUINT”). With the recent culmination of the unique modeling tools, SINDA/ FLUINT has arguably become the most complete general-purpose thermohydraulic network analyzer that is available.
The NASA standard tool for thermohydraulic analysis, SINDA/FLUINT, includes thermodynamic and hydrodynamic solutions specifically targeted at the growing demand for design and analysis of liquid propulsion systems. Applications in this field have included: