Skip to main content

Thermoelectric couples are solid-state devices capable of generating electrical power from a temperature gradient (known as the Seebeck effect) or converting electrical energy into a temperature gradient (known as the Peltier effect). Thermoelectric coolers, being solid state devices, have no moving parts which makes them inherently reliable and ideal for cooling components in a system sensitive to mechanical vibration. The ability to use TECs to heat as well as cool makes them suitable for applications requiring temperature stabilization of a device over a specified temperature range.

This document summarizes the activities of the WPI Nanosat-3 (N3) program proposed in response to a BAA by the AFOSR and AIAA (University Nanosat Program, AFOSR BAA 2003-02) . Specifically, we proposed to have WPI undergraduate and graduate student teams under the direct guidance of WPI faculty, develop a nanosat that would be used as a vehicle to investigate:

The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software.

The Crew Exploration Vehicle (CEV) is the next generation space vehicle to follow the Space Shuttle. A design with the inclusion of a Composite Pressure Vessel (CPV) has been assessed for its thermal response. The temperature distribution on the CPV that results from the heat produced by internal spacecraft systems and external space environments was calculated as part of a project-level assessment to understand thermomechanical stresses.

This paper summarizes the thermal math model correlation effort for the Fast Affordable Science and Technology SATellite (FASTSAT-HSV01), which was designed, built and tested by NASA's Marshall Space Flight Center (MSFC) and multiple partners. The satellite launched in November 2010 on a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. It carried three Earth science experiments and two technology demonstrations into a low Earth circular orbit with an inclination of 72° and an altitude of 650 kilometers.

Advances in computer technologies and manufacturing processes allow creation of highly sophisticated components in compact platform. For example, a small scale satellite, such as the CubeSat, can now be used for scientific research in space rather than big scale project like the International Space Station (ISS). Recently a team of undergraduate and graduate students at SJSU has the opportunity to collaborate on designing and building a miniature size CubeSat with the dimension of 10x10x10 cm.

Over the past 15 years, the industry standard tool for thermal analysis, SINDA, has been expanded to include advanced thermodynamic and hydrodynamic solutions (“FLUINT”). With the recent culmination of the unique modeling tools that are described in this paper, and with concurrent expansions described elsewhere (Ref 1), SINDA/ FLUINT has arguably become the most complete generalpurpose thermohydraulic network analyzer that is available.

Over the past 15 years, the industry standard tool for thermal analysis, SINDA, has been expanded to include advanced thermodynamic and hydrodynamic solutions (“FLUINT”). With the recent culmination of the unique modeling tools, SINDA/ FLUINT has arguably become the most complete general-purpose thermohydraulic network analyzer that is available.