Skip to main content

Large space structures are capable of large thermal deformations in the space environment. A case of large-scale thermal deformation was observed in the analysis of the Near Earth Asteroid Scout solar sail, with predicted tip displacements of more than one meter in seven-meter booms. Experimental data supports the broad conclusions of the analysis, but shows poor agreement on the details of the thermal deformation. Prediction that is precise enough to drive engineering decisions will require coupled thermal-stress analysis with features that are not found in current multiphysics codes.

This study explores the capability of Thermal Desktop to map temperatures from a thermal model to a Nastran model to evalautate thermal stress and distortion

The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software.

Maintaining low temperature payloads through atmospheric reentry and ground recovery is becoming a larger focus in the space program as work in biology, cryogenic and other temperature dependent sciences becomes a higher goal on the International Space Station (ISS) and extraterrestrial surfaces. Paragon analyzes reentry system thermal control, particularly technology regarding small thermally controlled payloads anticipated for use in sample return from the International Space Station.

Advances in computer technologies and manufacturing processes allow creation of highly sophisticated components in compact platform. For example, a small scale satellite, such as the CubeSat, can now be used for scientific research in space rather than big scale project like the International Space Station (ISS). Recently a team of undergraduate and graduate students at SJSU has the opportunity to collaborate on designing and building a miniature size CubeSat with the dimension of 10x10x10 cm.

Modeling to predict the condition of cryogenic propellants in an upper stage of a launch vehicle is necessary for mission planning and successful execution. Traditionally, this effort was performed using custom, in-house proprietary codes, limiting accessibility and application. Phenomena responsible for influencing the thermodynamic state of the propellant have been characterized as distinct events whose sequence defines a mission. These events include thermal stratification, passive thermal control roll (rotation), slosh, and engine firing.