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Abstract 
Thermal modeling is fraught with uncertainties such as 

film coefficients, contact resistances, dissipation rates, and 
effective conductances and capacitances of complex 
components. Adjusting the values of uncertainties in a 
thermal/fluid model to achieve a better fit with test data is a 
necessary step; this procedure is even codified into military 
standards for electronic equipment design, for example. 

Nonetheless, such “correlation” or “calibration” activities 
are typically done haphazardly and without any mathematical 
rigor, and are often impeded rather than aided by software. 

This paper shows how readily available nonlinear 
programming (NLP) techniques that were developed for 
optimization problems have been successfully used to 
automate this critical but laborious calibration task. This 
paper briefly introduces NLP concepts, and then demonstrates 
their application both to a simplified curve-fitting exercise as 
well as a real case: a transient with a serpentine condenser 
plate. 

Keywords: Calibration, correlation, validation, 
optimization, thermal analysis, parametric modeling, design 
automation. 

Uncertainties in Thermal/Fluid Analysis 
Variation can be classified in three categories: 

1. uncertainties in performance parameters: contact 
resistances, film coefficients, dissipation levels, 
effective thermal capacitances and conductances of 
complex components, etc. 

2. environmental or usage uncertainties: ambient 
temperature and humidity, duty cycle, etc., as well 
as degradations over the maintenance life of the 
product 

3. unit-to-unit (manufacturing) variations: bonding, 
fan performance, filter resistance, etc. 

Each category of variation is traditionally handled using 
different approaches. Because of differences between 
organizations, products, etc., the following attempt to describe 
“typical” approaches is necessarily a generalization. 

Reference 1 describes the use of statistical design 
techniques for treating certain classes of uncertainties. This 
paper describes complementary techniques for reducing 
design uncertainty by calibrating some or all of the underlying 
thermal/fluid model to any available test data, perhaps by 
exploiting tests performed on previous versions of the vehicle 
or product. Such a calibrated model then can be used with 
greater confidence to predict design performance in untested 
or even untestable conditions. Model calibration is a 
necessary step in many industries and organizations, with 

both the model and its calibration requiring independent 
reviews. 

Traditional Calibration “Techniques” 
Values for performance uncertainties can be calculated 

from limited test data. Unfortunately, because of the system-
level interactions of radiation and fluid flow, it rarely makes 
sense to perform thermal tests at low levels of assembly, and 
this means that the thermal/fluid model to be calibrated 
contains several (perhaps 5 to 30) simultaneous unknowns. 
Also, some unknowns (e.g., film coefficients) will vary over a 
range of test conditions (e.g., fan speeds). 

When faced with many uncertainties and copious test data, 
engineers most often address each uncertainty serially: the 
parameter judged to be the most influential is corrected first, 
then left at a fixed value. The second parameter is 
subsequently adjusted, ad nauseam. Most analysis software 
makes it difficult to make sweeping changes in input values, 
even between runs. Therefore, because of the labor and 
tedium involved, rarely is the above cycle repeated: the initial 
value found for the first parameter is usually not rechecked 
once values for all of the other parameters have been 
determined. 

In other words, current methods used for calibrating (or 
“correlating”) models are primitive: repetitive analysis runs 
are made varying one parameter at a time. Worse, selection of 
best-fit values is most often based on a visual comparison of 
plots of test data versus predictions. The current “algorithm” 
for model calibration is then: 

1. Choose the parameter with the most uncertainty 
and/or the parameter judged to have the greatest 
importance on the results. 

2. Create a plot of the results based on a guessed value 
of the uncertain parameter, and make repeated runs 
until a better fit is visually evident. If allowed by the 
thermal/fluid analysis software, make a parametric 
sweep of the uncertain parameter and select the value 
that results in the best fit. 

3. Choose the next most important/uncertain parameter 
on the list, and go to step 2. Continue through the list 
of uncertainties until either the desired match (e.g., 
error threshold) is achieved, or until the parameter list 
has been exhausted. 

As will be described next, a superior calibration results by 
varying all parameters simultaneously and by using more 
mathematical rigor when making comparisons between test 
data and predictions. An important benefit of this new 
approach is that the laborious methods that were described in 
this section can be replaced by an automated search for the 
best fit. 



Nonlinear Programming: Generalized Tasking 
Nonlinear programming (NLP) techniques attempt to find 

the maxima and minima of an objective function in N 
dimensions, while obeying arbitrarily complex constraints. 
Many algorithms exist for solving such problems, as do 
several off-the-shelf software packages. For example, the 
Solver module in Microsoft’s Excel® spreadsheet software is 
representative of this class of algorithm. 

Formal mathematical descriptions of NLP techniques are 
not necessary to understand their importance to thermal/fluid 
model calibration and other automation tasks. Rather, it is 
important to understand the four parts of a optimization task, 
as listed below (and as depicted in Figure 1): 

1. The objective function: an arbitrarily complex figure 
of merit to be maximized or minimized. 

2. The design variables: the parameters whose values at 
the optimum point need to be determined. 

3. Constraints: arbitrarily complex relationships that 
distinguish feasible design points (sets of values of 
design variables) from useless ones. 

4. Evaluation procedures: the generation of current 
values of the objective function and the constraint 
functions given a current set of design values. 

 

 
Figure 1: Four Concepts in Optimization 

 
Many engineers have seen these algorithms applied to 

design optimization: the generation or synthesis of a design 
that minimizes weight or cost, or that maximizes 
performance. However, the math underlying NLP techniques 
can be applied to a wide variety of tasks: it is a generic means 
of defining a complex task or search. 

For example, NLP algorithms can be applied to generating 
worst-case design scenarios, which represents yet another 
means of dealing with uncertainties in thermal/fluid design. In 
this case: 

1. The objective function is the temperature of some 
component to be maximized (“find the hot case”) or 
minimized (“find the cold case”). 

2. The design variables are the uncertainties. Especially 
common are environmental uncertainties such as 
ambient temperature, humidity, pressure (or altitude 

for avionics applications), and orientation (for aircraft 
and spacecraft applications). 

3. The evaluation procedure might consist of a steady-
state thermal/fluid analysis or a transient scenario that 
yields the temperature of critical components, given 
specific values of uncertainties (“design variables”) as 
inputs. 

Note that constraints are optional. 

Applying NLP to Model Calibration Problems 
In this paper, NLP techniques are described in relationship 

to model calibration tasks. One example of such a usage 
results in the following interpretations (Figure 2): 

1. The objective function is the difference between tests 
and predictions, to be minimized. (There are many 
ways to define such a function, as will be described 
later.) 

2. The design variables are the uncertainties: the bond 
resistance, the filter blockage or permeability, the fan 
efficiency, the film coefficient, etc. 

3. The evaluation procedure might consist of a steady-
state thermal/fluid analysis or a transient scenario that 
yields the temperature (or pressure etc.) of measured 
points, given specific values of uncertainties (“design 
variables”) as inputs. 

 

 
Figure 2: NLP Concepts Applied to Calibration 

 
Again, constraints are optional. (Upper and lower limits 

on design variables are important, but are not true 
mathematical constraints and are often referred to as “side 
constraints.”) 

The reader will note that the above examples leave plenty 
of room for interpretation. This is an important feature: the 
engineer retains complete control over what is uncertain (and 
by how much), how to define a good fit, and how to minimize 
the computations required to find that fit. For example, it is 
possible to calibrate to temperature derivatives in time instead 
of temperatures, or to find the least cubes fit instead of the 
least squares fit, or to add weighting factors to critical 
measurements etc. 

However, it is not the purpose of this paper to 
exhaustively list all of these possibilities. Instead, the basic 



concepts will be clarified via specific examples with the 
understanding that many, many more customizations are 
possible. 

Example: Simple Curve Fitting 
To illustrate the application of optimization concepts to 

calibration of models, an industry- and model-independent 
demonstration of a polynomial curve fit will be used. 

Assume that 13 data points (depicted in Figure 3) are to be 
fitted to a simple third order polynomial: 

 
Yp = A + BX + CX2 + DX3 

 

 
Figure 3: “Test Data” to be Curve Fit 

 
For this example, the above equation is the “model” and 

the “uncertainties” are the four variables A, B, C, and D. To 
cast this into an optimization format requires that decisions be 
made regarding how to define a good fit. For example, using 
a root sum of squares (RSS) as the objective to be minimized 
is equivalent to a least squares curve fit. For each of the 
thirteen points: 

 
OBJECT = SQRT[ ∑i=1,13(Yt,i -Yp,i )2 ] 

 
Yt,i is the test data and Yp,i is the prediction at the ith point 

based on the “design variables” A, B, C, and D. OBJECT is 
the current value of the objective function, which is to be 
minimized. No constraints are needed, although upper and/or 
lower limits could be imposed on the design variables. (No 
such limits are applied in this simple example.) 

The “evaluation procedure” consists simply of calculating 
the thirteen values of Yp,i  given current values of A, B, C, and 
D, then computing the above objective. 

The results of this exercise are shown in Figure 4. 
Figure 4 also depicts the results of an alternative definition 

of a good fit: minimized maximum error (“Minimax”). The 
Minimax method often produces better fits to data, but is 
more sensitive to noise in the test data and often slower to 
solve. Also, for most NLP algorithms the simple replacement 
of an objective function with OBJECT = |Yt,i -Yp,i |max is 
unacceptable because it introduces discontinuities. 

 

  
Figure 4: RSS and Minimax Curve Fits 

 
To avoid discontinuities, a fifth design variable “E” is 

introduced and set equal to the objective function to be 
minimized (i.e., “OBJECT = E”). Then thirteen constraints 
are generated, one for each (ith) data point/prediction pair: 

 
-E < (Yt,i -Yp.i ) < E 

 
More details on the uses of Minimax methods, along with 

examples, are presented in Reference 2 (see Section 5 and 
Sample Problem E). The point of introducing this alternative 
here is to illustrate the flexibility available to the engineer in 
defining the calibration problem. Other possible objectives 
include minimizing cubic or quartic errors, standard 
deviations, and weighted error (i.e., make calibration at some 
points more important than at others). 

Of course, the usefulness of the resulting calibrated model 
(in this case, the third order polynomial with four fitted values 
of the coefficients) is dependent on the model itself. A fourth 
order polynomial would have generated a better fit, as would 
many other functions. More critically, a poorly chosen 
predictive formula would always result in erroneous 
predictions of test data, no matter how well it was calibrated 
or fit. This is analogous to calibrating an inappropriate or 
error-ridden thermal/fluid model: calibration can’t fix a bad 
model. This will be discussed further in a later section. 

Example: Condenser Transient 
This section demonstrates the application of automated 

model calibration techniques to an actual test of an ammonia 
condenser. 

A thick aluminum plate (65kg) is bonded to a serpentine 
duct, as depicted in Figure 5 (the uneven spacing is 
intentional: the sketch is approximately to scale). The duct is 
not plain piping, but rather internally grooved to enhance 
condensation: it is a trapezoidally axially grooved (TAG) 
aluminum heat pipe extrusion, although it was not used as a 
heat pipe in this test. 

The plate is attached to a cold sink via a malleable, 
conductive pad, but this pathway does not provide sufficient 
rejection for the heat load that will be supplied. Instead, the 
plate is initially cold and warms up over the course of a 42 
minute transient event. 



 

Figure 5: Geometry for Condenser Plate Transient 
 
Initially, the entire system is quiescent at 6.6˚C: the 

ammonia within the condenser is stagnant liquid. At time 
zero, saturated ammonia vapor at 29˚C is supplied upstream at 
a rate corresponding to a heat input of 510W. As the plate 
warms, the condensation point progresses through the plate 
until it has reached the exit and the plate can no longer 
provide complete condensation. 

Data at three points along the condenser was available as 
functions of time. 

Assuming that the 29˚C saturation temperature and 510W 
evaporative input are both correct (they will be selected as 
uncertainties later), a simple SINDA/FLUINT (Ref 2) 
thermal/fluid model of the system was generated. Vendor-
supplied data was used for the conductive pad, and the 
condensing film coefficient in the grooved tubing was 
estimated using a correlation generated for heat pipes. 

The test data (black/solid) and the initial predictions 
(blue/dashed) for the transient event are provided as Figure 6. 
The top curves correspond to a point near the condenser inlet, 
whereas the bottom curves correspond to a point near the 
outlet. 

The first step towards calibrating the model to the test data 
is to identify the key uncertainties. Based on engineering 
judgement, four quantities are identified along with limits on 
their reasonable range of variation: 

1. The power input into the vaporizer. Although 
measured to be 510W, a measurement error of 5% is 
allowed. Also, heat leaks may cause less than the full 
amount of heat to flow into ammonia. The power 

input is therefore allowed to vary from 90% to 105% 
of the nominal value. 

2. The saturation temperature of the ammonia system, 
which was measured in the test to be 29˚C at a 
reservoir. A 0.5˚C uncertainty is assigned to this 
value, plus an additional 0.5˚C on the upper end 
because the vapor in the reservoir can compress 
during start-up (and this effect might not be 
evidenced in the thermocouple). Thus, the saturation 
temperature is allowed to range from 28.5˚C to 31˚C. 

3. The thermal resistance of the conductive pad is 
suspect since vendor data was used and might 
therefore be optimistic. Also, unit-to-unit variation 
exists due to clamp pressures and hysteresis (from 
previous clamp/release cycles). A large uncertainty is 
therefore allowed in this parameter: from 50% to 
150% of the nominal conductance value. This 
correction factor is assumed constant throughout the 
pad. 

4. The condensation coefficient. The film coefficient 
correlation used in the condenser may not be 
appropriate for forced flow. A single correction 
factor on the resulting coefficients is therefore 
applied throughout the condenser, with values of 
between 75% and 125% of nominal assumed. 

 

 
Figure 6: Test Data vs. Pre-calibration Predictions 

 
The above uncertain parameters are applied as “design 

variables” to the NLP solver, with limits applied as side 
constraints. The evaluation procedure is to generate the 
transient temperature profiles using current values of the four 
parameters, and compare these with the test data to generate 
the objective function value. 

As with the previous curve fitting example, two 
definitiions of the objective function are used: a “least 
squares” method (RMS or root-mean-square, which is 
equivalent to RSS since they have the same minumum) and 
“Minimax” (minimized maximum error) method. The results, 
generated using the built-in NLP “Solver” module in 
SINDA/FLUINT, are shown in Figure 7. 

As can be seen in Figure 7, both methods return about the 
same predictions, resulting in very good agreement with the 
test data. The RMS method takes 37 evaluations (transient 



analyses) while the Minimax method requires almost twice as 
many. The RMS method returns a calibrated model with an 
RMS temperature error of about 1˚C, while the Minimax 
method returns a maximum error of about 2˚C. 

However, the resulting values of the four uncertainties are 
not the same for both traces: multiple solutions exist. The 
RMS method resulted in 105% of the nominal input power 
(e.g., the limit) while the Minimax method required only 
102%. Whenever such a limit is reached, then its selection 
must be questioned because the limit is influencing the 
answers. In other words, could a larger range of variation 
have been possible? 

Both methods agreed that the saturation temperature was 
too low, but the RMS method returned a value of 30.2˚C 
while the Minimax method required a much smaller departure 
of 29.2˚C. 

 

 
Figure 7: Test Data vs. Calibrated Predictions 

 
However, the largest source of disagreement were the 

correction factors for the conductive pad and condensation 
heat transfer. The RMS method made hardly any change to 
the condensation heat transfer coefficient (101% of nominal) 
while the Minimax method lowered this factor to its lower 
limit (75% of nominal, again hitting a limit). Conversely, the 
RMS method dropped the pad conductance to 84% of the 
nominal value, while the Minimax method retained 95% of 
that conductance. At first, these disagreements might seem 
contradictory until one realizes that both factors are applied in 
parallel to the same heat flows: a reduction in one term results 
in about the same temperature predictions as does a reduction 
in the other term. The RMS method reduced one parameter 
and left the other alone, while the Minimax method reduced 
the complementary parameter, such that they both yeilded 
approximately the same temperature predictions (as evident in 
Fiture 7). 

Also, both methods struggle to fit to the last (coldest) trace 
near the outlet towards the end of the transient. Although it is 
likely that this discrepancy is due to the simplicity of the 
model employed, it is also possible that some heat transfer 
pathway or physicial process was neglected. For example, 
spatial variations in the conductive pad performance are 
common but were neglected in the underlying model. This 

could have been accounted in the calibration procedure, but at 
the cost of a much greater number of uncertain parameters. 
For example, one could apply one adjustment factor for each 
of the 9 regions of the plate. Such an agumentation of 
uncertain parameters (from 4 to 13) would require even more 
transient evaluations (from 40 to about 200 in this case). 

These difficulties have been elaborated in this example 
because they illustrate generalized points to be made in the 
next section. However, they should not detract from the fact 
that an automatically calibrated model resulted in a fit that 
was not only better than military standards, but was also 
better than was achieved using traditional (sequential, visual) 
techniques such as the labor-intensive ones that were 
described earlier. 

Challenges for the Engineer 
As was noted above, calibration can’t fix a bad model. 

Despite all of the benefits of automated thermal/fluid model 
calibration techniques, analyst responsibility is not eliminated 
so much as shifted. The analyst retains the responsibility of 
building a sensible and complete model, with appropriate 
attention to the physics of each problem. In fact, because the 
model will be run parametrically many times, it might even 
have to be more robust and faster to execute than was 
tolerable using prior manual calibration techniques. 
Fortunately, these model preparations do not represent a 
departure from previous techniques or experience. 

Challenges that might be new to the engineer using 
automated calibration techniques are listed below. 

First, the choice of which parameters to declare as 
uncertain, and within which bounds, is critical. Failure to 
include a critical parameter or sufficient variation in a 
parameter can yield a false fit, yet too many parameters with 
bounds that are too liberal is inefficient. 

Second, as was noted above, many different definitions of 
“best fit” can be mathematically specified. For example, a 
weighted least-squares is possible assigning more value to 
good correlation at critical components, or at critical 
simulation times, etc. 

Third, although it is theoretically possible just to list all 
test cases with corresponding model runs as an “evaluation 
procedure” and activate all possible uncertain variables at 
once, huge efficiencies can be gained by a little preplanning 
and preparation of subset calibrations. For example, it is 
common practice to first calibrate thermal 
resistances/conductances to steady state test results, and then 
proceed to calibrating effective capacitances to transient test 
results. 

Fourth, the engineer must accept or reject the resulting 
calibrated model, checking to see if limits in uncertainties 
have been reached. The engineer should consider improving 
the model or expanding the set of uncertain parameters as 
needed to achieve a reasonable fit. 

This verification stage also includes searching for multiple 
solutions. The easiest way to check for the existence of 
multiple solutions is to rerun the problem using different 
initial values of the uncertain parameters, and see if either the 
same fit was achieved or if an equally good fit results using 
different final values of the uncertainies. 



Challenges for Analysis Software 
How does a thermal design engineer exploit the 

availability of these advanced techniques using their favorite 
thermal/fluid analyzer? Model calibration techniques involve 
a higher level of analysis beyond a traditional “point design 
simulation.” Most engineering analysis software is set up to 
solve a deterministic set of equations, either steady state or 
transient, given a fixed set of inputs. In other words, these 
programs provide predictions of how a single point design 
performs under specific environments. Automated model 
calibration, on the other hand, requires either using or 
creating a software tool that can perform multiple iterative 
point design evaluations. This section describes three 
approaches toward achieving such a capability. 

The first option uses an in-house development approach. 
First, engineers can write their own optimization engine or 
purchase one commercially. Then, a means of executing the 
thermal/fluid analyzer iteratively must be achieved, perhaps 
via an API (application programmer interface) if available, or 
perhaps simply by modifying and rewriting text input files 
and reading text output files. A script can be generated to 
iteratively run the thermal/fluid analyzer, driving the 
uncertain inputs with the optimization engine such that a best 
match is achieved between simulation predictions and test 
data. This option is cost effective only if software 
development labor is inexpensive or if an organization is large 
enough to recoup the investment of the development of a 
general-purpose utility. Otherwise, considerable effort will be 
spent rewriting the software every time a new calibration task 
arises. 

As the second option, engineers can acquire a general 
purpose MDO (multidisciplinary optimization) environment. 
Examples of such software include Engineous’ iSIGHT®, 
Phoenix Integration’s ModelCenter®, MSC Software’s 
RDCS, Synapse’ Pointer®, VR&D’s VisualDOC®, LMS’ 
Optimus®, and Samtech’s BossQuattro. To varying degrees, 
these programs enable the engineer to set up their favorite 
thermal/fluid simulation code as part of the evaluation of any 
one set of unknown or random inputs. The advantages are that 
these thermal/fluid simulation codes need not “know” that 
they are being used in such an iterative fashion: little to no 
modifications of the simulation codes and models are 
required. This approach also has the advantage of providing 
an infrastructure that reduces the time to create a new 
calibration or reliability estimation task. However, 
disadvantages of the MDO approach include the cost of 
acquiring and learning such codes, and the relatively slow 
speeds resulting from inefficiencies in running the simulation 
code in such a disconnected fashion. Nonetheless, such an 
approach is clearly better than the current “manual” and 
“serial” method of calibrating models.  

A third choice is to use a thermal/fluid analyzer that 
already has these advanced features built-in. This avoids the 
overhead associated with the first choice, and the additional 
costs associated with the second choice, and is much faster to 
execute than either of those choices for various reasons.1 
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 In addition to avoiding interprocess communication and overhead 
associated with starting and restarting programs, a built-in capability can 

However, choices are limited for two reasons. First and most 
important, few thermal/fluid analysts are aware of such 
capabilities, and hence they more typically demand additional 
detailed phenomenological modeling power rather than more 
help with design and calibration tasks. Forgivably, 
commercial vendors listen to them, and the demand for high-
level decision support tools is therefore slack. Second, even 
after analysts discover these gains in productivity and begin to 
demand them, software suppliers will find it difficult to 
accommodate these requests without significant changes in 
their software. To accommodate high-level analyses such as 
model calibration and reliability estimation, the software must 
first become fully parametric instead of expecting single-
valued (“hard-wired”) design and environment specifications. 
There is hope, however: structural analysis and CAD software 
have increasingly emphasized such capabilities in their new 
releases over the last five years. It is hoped that thermal/fluid 
analysis tools can follow these examples and catch up once 
the user community has been educated and the demand for 
new capabilities is established. 

Conclusions 
Removal or reduction of uncertainty is an important if not 

required step in most thermal/fluid analyses. However, 
existing techniques are labor-intensive and faulty since they 
are rarely rigorous. This paper has shown how existing 
models built using existing software can be automatically 
rerun using NLP technology tasked with seeking a best fit. In 
software designed to include these capabilities as “native,” 
application of automated calibration techniques is becoming 
commonplace. 

The resulting techniques are not magic and still require a 
good model and an experienced engineer making sound 
decisions. However, a significant improvement in both 
productivity and predictability has been demonstrated and is 
in current active use. 
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exploit the advantage that previous steady state solutions (which usually 
comprise the majority of calibration and reliability assessment tasks) in the 
search were close to the current solution, and can jump quickly to incremental 
answers. 

 


