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ABSTRACT

This paper describes readily available techniques for auto-
mating the search for worst-case (e.g., “hot case”, “cold
case”) design scenarios using only modest computational
resources. These methods not only streamline a repetitive
yet crucial task, they usually produce better results.

The problems with prior approaches are summarized, then
the improvements are demonstrated via a simplified exam-
ple that is analyzed using various approaches. Finally,
areas for further automation are outlined, including attack-
ing the entire design problem at a higher-level.

BACKGROUND

This paper is the final installment of a series on the auto-
mation of engineering analysis tasks, with an emphasis on
thermal engineering. Reference 1 introduced the impor-
tance of parametric modeling, Reference 2 describes the
application of optimization technologies to design prob-
lems, Reference 3 describes their application to automated
calibration (“correlation”) of models to test data, Reference
4 introduces means of handling uncertainties and varia-
tions statistically, and References 5 and 6 concern the
extension of these advanced techniques to multidisci-
plinary design problems.*

This paper describes the application of statistical sampling
and optimization techniques to the automatic searching for
worst-case design scenarios. It builds upon a foundation
provided in the earlier papers, and concludes with a discus-
sion of revolutionary design methodologies that are possi-
ble via the simultaneous inclusion of all such technologies:
the elimination of the need to define worse-case scenarios
in the first place. Nevertheless, an attempt has been made
to make the basic points of this paper accessible without
having read the prior papers.

PROBLEM STATEMENT

To produce a design, scenarios are first developed against
which candidate designs can be evaluated. For a thermal
engineer, this often involves stacking up worst-case envi-
ronments, performance degradations, property and mission
uncertainties, etc. into at least two sets: a hot case and a

cold case. Often, it is not clear which situation generates
the most extreme responses. This lack of a clear-cut sce-
nario is especially common in spacecraft thermal control,
where orbital variations, articulating components, and the
importance of transient responses confound simplistic
approaches. It is also common that simplifying assump-
tions (e.g., steady-state at subsolar point) result in exces-
sive margin and hence inefficient designs. Furthermore, the
worst case for one component is rarely the same as that for
another.

In producing a hot case, for example, the engineer some-
times applies conflicting but conservative assumptions
such as estimated end-of-life (degraded) optical properties
combined with estimated beginning-of-life (undegraded)
power generation and dissipation. For orbital environ-
ments, it isn’t always clear which beta angles (β, the angle
between the orbital plane and the sun-planet vector) result
in the worst case. Small beta angles maximize planetary
heat sources and battery dissipations, while large angles
maximize time spent in the sun. In cases where transient
effects can be neglected without excessive conservatism,
the worst-case position within the orbit (e.g., subsolar,
shadow entry, shadow exit, orbital average) must be found
for any particular beta angle. Solar panels, antennae, and
other payloads sometimes articulate to track celestial or
terrestrial targets. Some dissipative components turn on or
off at different times in the orbit for different durations, or
otherwise exhibit complex duty cycles.

In any reasonably complex design, the determination of an
adequately (but not excessively) conservative design sce-
nario is far from trivial. There exist standards for design
margin, but no standards or guidelines for determining the
cases against which such margins will be applied. The
sheer number of cases that must be evaluated overwhelms
the computational resources available to the thermal engi-
neer. Worse, almost any change to the design or its mis-
sion requires a re-evaluation of the worst case scenarios
that were previously chosen.

CURRENT STATE-OF-THE-ART

Because of the difficulty in performing a thorough search
for the absolute worst case possible, compromises are
often made. For example, worst-case environments are
often sought instead of the more appropriate criteria: condi-
tions that result in the highest and lowest operating temper-
atures. Such a limited search of heat rates instead of
temperatures is still in need of automation, and the meth-
ods described in this paper are applicable to that criterion

* Similarly, the approaches outlined in this paper can be easily 
extended to multidisciplinary worst-case searches (e.g., 
greatest thermoelastic distortion) by combining them with the 
techniques described in Reference 6.
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as well even though the examples below focus on the more
appropriate criterion of peak temperature.

Another common compromise is to use orbital average
environments or stationary points in determining the worst
case scenario. This greatly reduces the computational bur-
den, such that more points can be searched. Without such
an approach, each transient evaluation of a single case not
only begins with a steady state, but must execute at least
two transient orbits in order to “wash out” initial conditions:
to arrive at a cyclically converged profile.

Finally, a few organizations have employed a “full factorial”
(FF) search: the identification of all significant sources of
variation (e.g., beta angle, properties, usage scenarios),
and a complete and systematic evaluation of all possible
combinations (subject to finite discretization). Such
searches are automated by scripting repetitive runs of geo-
metric math models (GMM) and thermal math models
(TMM). Using older software that is nonparametric and/or
not designed for repetitive analyses, such searches take
weeks of computer time and often require specialized
equipment such as arrays of parallel processors.

Parametric software (Ref 7) tremendously speeds up this
heavy-handed search by avoiding unnecessary prepro-
cessing, recompiling, and even recomputation of previously
stored results. Nonetheless, a full factorial search remains
an expensive proposition, especially when it must be
repeated many times as the design or mission evolves.

Herrera et al (Ref 8) proposed using a Monte Carlo sam-
pling technique to locate the worst-case design scenario. In
their sample case, 250 evaluations (sample cases) were
tested, each performed using older stand-alone nonpara-
metric software. Therefore, a custom set-up was required:
parallel arrays of processors. Even if more modern soft-
ware had been applied to this case, many more evaluations
are usually required for Monte Carlo techniques than 250:
usually on the order of 1000. Therefore, such an approach
is not significantly different from a full factorial search. Also,
both techniques rely on finite sampling and therefore tend
to locate a poor scenario, but not necessarily the worst
possible case.

EXAMPLE MISSION DESCRIPTION

As a mechanism for illustrating various points, a sample
space vehicle, mission, and thermal model will be
employed. This vehicle and its mission were chosen to be
generic. They are greatly simplified not only to avoid any
issues with classified or proprietary information, but also to
be both easy to describe and fast to solve such that com-
parisons with the current computationally inefficient meth-
ods can be made. In fact, only data relevant to the hot case
is provided to further simplify the presentation. The prob-
lems encountered and their solution, however, are common
to many spacecraft and indeed many other terrestrial ther-
mal engineering problems.

The following description is therefore relatively terse. The
full model can be obtained electronically upon request.
.

The example vehicle consists of a nadir-facing (3 axis sta-
bilized) box in low Earth orbit (300km). The box is an alumi-
num shell 0.5m x 0.75m x 1m. In the velocity vector (+X
axis) is a 0.75m wide by 3m long solar panel that tracks the
sun on two axes. Opposite the solar panel (on the trailing
side) is a 1m diameter parabolic radar dish that nominally
faces the Earth (+Z axis), but that scans +/-30 degrees in
the YZ plane. The vehicle can operate at any beta angle (0
to 90). Figure 1 depicts the thermal model of the vehicle in
orbit just after it leaves the shadow, with β=30°. 

The +Y and -Y faces of the box are available (and are fully
utilized) as radiators. The remainder is insulated with MLI.
The insides of the box (and all components) are painted
black.

A “payload component” is located inside the box and is
attached to the nadir (+Z) face via a contact conductance of

1000 W/m2-K. This component dissipates a constant 60W.

A “battery” roughly representative of a single or common
pressure vessel (SPV, CPV) nickel-hydrogen cell is
mounted on the opposite (-Z) face with the same contact
conductance. The battery dissipates 100W while discharg-

Figure 1: Example Vehicle
for Demonstration of Hot Case Search

β
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ing, -20W (endothermic) while charging (the first 1000 sec-
onds after shadow exit), and 10W during a trickle charge
(the remainder of the time in the sun). 

Figure 2 depicts the vehicle in two different orientations,
with different sides of the box removed in each case to
show the internal components.

For 10 minutes during each orbit, a 600W dissipation
occurs within the box as the vehicle downloads data to a
ground location. From an thermal/orbital perspective, the
point at which this “download pulse” commences is uncer-
tain: it can start at any time during the orbit.

EXAMPLE VEHICLE THERMAL MODEL

A thermal model was constructed in Thermal Desktop (Ref
7, 9), with SINDA/FLUINT (Ref 10) as the underlying ther-
mal/fluid solution engine (including statistical analysis and
optimization drivers).

The resolution of the model is coarse: about 250 nodes. No
attempts were made to fine-tune the accuracy and conver-
gence parameters: the defaults were used. Although mixed
finite-difference (FDM) and finite-element (FEM) models
are possible in Thermal Desktop, the example model used
only finite differences because of the simplicity of the sur-
faces and solids involved.

Because of the mass of the components, a full transient
simulation of the orbit was performed and maximum tem-
peratures of each component were tracked. Therefore,
each evaluation point consisted of a steady-state using
orbital-averages as initial conditions, plus a two-orbit tran-
sient. (The use of two orbits was verified to be adequate to
extinguish the effects of initial conditions and achieve cyclic
convergence.) Only predictions from the final orbit were
used in the search for the hottest temperatures experi-
enced by any component.

The average total run time for the evaluation of a single
case was about 45 seconds on a 1.8Ghz Intel Pentium® 4.
This includes the calculation of radiation factors and orbital
environments* at 15 orbit positions, recalculation of the
conduction/capacitance network including contact conduc-
tion, automatic transfer of recalculated data from Thermal
Desktop to SINDA/FLUINT, and the execution of the
steady state and two-orbit transient integration.

Part of this speed results from the use of parametric tools
designed specifically for such repetitions (Ref 5) since such
parametric variations are needed for a variety of tasks (siz-
ing, correlation to test data, sensitivity and reliability
assessments, etc.). This speed allows almost 100 cases to
be tested per hour on a modest single-processor PC. While
this model was not honed for speed, a more realistic vehi-
cle model would be much larger. Therefore, the need
remains to keep the number of tested cases to an absolute
minimum, which is the focus of the remainder of this paper.

PARAMETERS FOR HOT CASE SEARCH

In this simplified example, there are two components of
concern: the “battery” and “payload.” Only the hot case will
be considered since only one example is needed to illus-
trate the methodologies available. Obviously, in a real vehi-
cle design many more components and cases would need
to be considered, again reinforcing the need for improved
methodology and not just faster software or bigger comput-
ers.

Similarly, only three parameters will be used to explore the
“design space” of the vehicle and mission:

1. the beta angle (β), which is allowed to vary from 0
(largest shadow) to 90 degrees (ful l  sun, no
shadow);

2. the scan angle of the radar dish, which can be
located up to 30 degrees off nadir (-30 to 30) at any

Figure 2: Example Vehicle
(Shown postprocessed, near sides removed to show 

inside details.)
* using oct-cell accelerated Monte Carlo Ray Tracing to handle 

specularity
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point in the orbit, and is slow enough to be consid-
ered stationary in any design case evaluation;

3. the start time of the download pulse, which can occur
at any time (between 0 and the orbit period, about
5400 seconds).

The selection of these parameters, the designation of their
potential range of variation, and simplifying conservative
assumptions (such as not considering the scan angle to
change during an orbit) are critical to the success of the
subsequent search, and cannot be readily automated: an
experienced and careful engineer is still an important ingre-
dient. Removal of other uncertainties from consideration as
parameters, such as using fixed end-of-life (degraded) opti-
cal properties and maximum possible component dissipa-
tions and/or minimum possible efficiencies, keeps the
problem from becoming intractable.

FULL FACTORIAL SCAN

As noted above, a “full factorial” (FF) scan means a search
made of all parameters, each evaluated at several discrete
levels in combination with all other variations. In the exam-
ple provided, four beta angles of 0, 30, 60, and 90 degrees
are evaluated, as are three scan angles of -30, 0, and 30
degrees, and four pulse start times (0, 1600, 3200, and
4800 seconds from the subsolar point). The number of
cases to be evaluated at this coarse resolution is 4*3*4 =
48.

Using the dynamic mode in Thermal Desktop and the
DSCANFF design space scanner in SINDA/FLUINT, the
results listed in Table 1 were produced.

The drawbacks of this simplistic method quickly become
clear: the number of cases that must be evaluated grows
rapidly for any reasonable resolution of any one parameter
or with the addition of any new parameter. For example, to
test more beta angles (say 10 values: 0, 10, ... 90) and then
to add another parameter with 3 levels raises the number
of cases that must evaluated from 48 to 360. Without
higher resolution, the engineer risks missing a point of
maximum temperature: the true worst case. Therefore, a
full factorial search typically requires on the order of 1000
(meaning from 300 to 3000) evaluations for a realistically
complex mission.

If a Monte Carlo approach were used, the values of param-
eters are picked randomly from within their range (usually
using a simple uniform probability distribution function--all
values are equally likely). A similar order of magnitude of

evaluations is required. Therefore, the Monte Carlo
approach does not represent any improvement, and has
the disadvantage of not checking the boundaries of the
problem (i.e., upper and lower limits of all parameters),
where the true maxima or minima often exist.

LATIN HYPERCUBE SCAN

Superior alternatives to both the full factorial and Monte
Carlo scans exist: descriptive sampling methods such as
the latin hypercube method.

The basics of the latin hypercube (LH) method are demon-
strated visually in Figure 3. Instead of selecting values of
parameters randomly as is done in a Monte Carlo
approach, values are selected “descriptively.” The resolu-
tion of all sampled parameters is the same as the total
number of cases evaluated. In Figure 3, a problem with two
parameters (A and B) has been sampled with a resolution
of 5: five values of each parameter are sampled, but the
same value of any one parameter is never tested twice.
The cells within the hypercube are themselves chosen ran-
domly,* and nonuniform probability distributions may be
used if available.

When used for gathering statistical information, LH descrip-
tive sampling is approximately 5 to 10 times more efficient
than Monte Carlo sampling (as can be verified using the
DSAMPLE vs. SAMPLE reliability evaluation routines in
SINDA/FLUINT). In other words, the same level of accu-
racy can be gained in only 10% to 20% of the evaluations
needed by the Monte Carlo (and presumably the FF)
search methods. This means use of the LH method cuts
the order of magnitude of evaluations needed for realistic
worst-case searches from 1000 to about 100.

To illustrate this point, an LH scan of the example problem
was made to determine the hot case, using a resolution of
20 in the SINDA/FLUINT DSCANLH utility: twenty total
evaluations were made, with each parameter tested once

Table 1: Results of Full Factorial Scan

Component

beta 
angle 
(deg)

scan 
angle 
(deg)

pulse 
start 
time 
(sec)

Peak 
Temp 
(K)

Time 
of 
Peak 
(sec)

Battery 60 -30 0 291.7 3525

Payload 90 -30 0 301.8 760

* Variations of the LH method exist in which cells are chosen 
deterministically. For example, in a “space filling” LH method, 
cells are chosen such that distances between cells are maxi-
mized.

Figure 3:  Two Possible Latin Hypercube Samplings
of a Two Dimensional Design Space

with a Discretization Level of Five

AL AH
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at 20 different values. For example, tested beta angles
were 2.25, 6.75, 11.25, ... 87.75). The results are pre-
sented in Table 2: better answers are obtained using a
fraction of the cost of the FF scan.

Some important general conclusions are now possible.
First, the scan angle is really not a relevant parameter:
changes in the position of the dish have only a small effect
on the temperatures of components within the spacecraft
box because insulation exists on the side of the box facing
the dish. Beta angle is the most important parameter, and
the pulse start time is intermediate in importance.

The main advantage of the LH method over the FF method
is that important parameters are sampled at maximum res-
olution, while the inclusion of unimportant parameters does
not significantly increase the cost of the search. In other
words, the inclusion of the unimportant scan angle didn’t
prevent the LH method from out-sampling the FF method
on more important parameters such as beta angle, and
therefore it found a better answer in a shorter time.

This advantage is reduced, however, if there are many
important and independent parameters. Nonetheless, in
such cases LH methods can be used to help identify which
parameters to include or exclude from more narrowly
focussed FF or Monte Carlo scans.

OPTIMIZATION APPROACH

A drawback to any sampling method is that it cannot obtain
the absolute maximum or minimum temperature of any
component: its accuracy is subject to the resolution cho-
sen. This means that there is a relationship between the
cost of the solution and its accuracy. This conclusion is so
common in engineering analysis problems that it might at
first seem strange that an alternative exists whose cost is
not strongly related to its accuracy: optimization technol-
ogy.

As the name implies, optimization algorithms can be
applied to automating the search for more efficient or less
costly designs, as discussed in Reference 2. However,
many other problems can be cast as optimization prob-
lems. For example, “find the values of uncertainties that
minimize the difference between test data and model pre-
dictions” represents the application of optimization technol-
ogy to the automation of test data calibration or
“correlation” (Ref 3).

Analogously, optimization technology can be directly
applied to automate the search for the worst-case design
scenarios: “find the values of beta angle, scan angle, and
pulse start time that maximize the peak temperature expe-
rienced by the battery.”

The SINDA/FLUINT Solver module (Ref 10) and other off-
the-shelf commercial packages (including the Solver mod-
ule in Microsoft Excel®) are therefore directly applicable.

As applied to the example problem, the user chooses the
beta angle, scan angle, and pulse start time as design vari-
ables and chooses either the battery or payload peak tem-
perature as the objective to be maximized (or minimized for
the cold case). Starting from a user-selected point, the
Solver takes about 20 to 100 evaluations to find the maxi-
mum or minimum.

There are three main drawbacks of using only optimization
methods. First and foremost, the optimization has to be
repeated for every component of interest. For this example
problem in this paper, this means only two Solver calls are
needed, but in a more realistic vehicle and mission, the
number of optimization runs might increase intractably. By
way of comparison, recall that a single statistical run
(whether LH, FF, or Monte Carlo) can return worst-cases
for all equipment simultaneously.

The second and third drawbacks have the same root cause
(and the same solution, as will be presented later). It is diffi-
cult to predict ahead of time how many evaluations will be
needed, in part because the user may not have specified a
good starting point. The third and more worrisome draw-
back is that local minima or maxima may exist. The Solver,
like most optimization algorithms, may stop and declare
success at a point that doesn’t represent the worst possible
case, simply the first one it found: results are sensitive to
the starting point.

It should be noted that most engineers new to optimization
are overly concerned with this issue (i.e., local minima/
maxima) for most other applications. The traditional appli-
cation to design optimization, for example, rarely encoun-
ters this problem because such design problems (e.g.,
sizing, locating, etc.) are highly constrained and start from
reasonable points. The “local minima” concern is relevant,
however, for both worst-case searching and calibration to
test data since they are both usually unconstrained. In fact,
the problem is most acute for worst-case searching since
there is no good starting point: the whole purpose of auto-
mating a search is that the topology of the design space is
poorly known ahead of time.

HYBRID METHOD

The second and third drawbacks of the optimization
approach are both related to the selection of a poor starting
point, and this problem can be readily addressed by a sim-
ple hybrid method: using a low-resolution latin hypercube
scan to pre-search the design space for a good starting
point for the optimization engine. In SINDA/FLUINT par-

Table 2: Results of Latin Hypercube Scan

Component

beta 
angle 
(deg)

scan 
angle 
(deg)

pulse 
start 
time 
(sec)

Peak 
Temp 
(K)

Time 
of 
Peak 
(sec)

Battery 47.25 -1.5 1088 291.8 3683

Payload 78.75 13.5 122 303.0 880
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lance, simply call DSCANLH (once) immediately before
calling SOLVER (one or more times per component).

To demonstrate, when the results of Table 2 are used as
the starting point for an optimization-directed search, the
best-yet worst cases are found, as reported in Table 3. To
achieve these results took 25 evaluations for the battery,
and 62 for the payload (more were required for that compo-
nent because of the nature of that maximum, which is dis-
cussed later). Note that a much more coarse LH search
could have preceded such an optimization: a resolution of
10 would have sufficed as well, although a trade-off clearly
exists between better starting points (greater LH resolution)
versus more time spent in the optimization search.

RESULTS DISCUSSION

Given that the hybrid method produced the best answers at
an efficient cost (and is hence the recommended general-
purpose strategy), the results in Table 3 will be treated as
conclusive. Therefore, a brief review of those results will be
made for the example problem before returning to the topic
of search methods.

As was noted before, the importance of the scan angle is
minimal: it could effectively be removed as a search param-
eter without causing much difference in the results. The
beta angle is more critical, which is usually true in orbital
spacecraft design.

The peak temperature for the payload (Figure 4) occurs in
almost full sun (meaning β=90°), except that radiative
cross-communication with the battery means that the pay-

load temperature is maximized when the battery is also at
least a little active: high β, but less than 90°. In full sun, the
battery dissipation reduces to a small trickle charge of
10W, versus an orbital average of about 40W when
shadow is encountered and the solar panels shut down,
requiring battery assist. This “just a modest shadow” result
is what caused the Solver to take more evaluations for the
payload than for the battery. The worst-case time for the
download pulse to occur is near the subsolar point from the
perspective of the payload, since that coincides with its
highest temperature already.

The worst case for the battery (Figure 5) occurred at a
lower beta angle: an angle where the battery was more
active but still a little more sun reached the radiators than
would occur at β=0°. (At β=0°, the radiators see no sun
and only planet shine.) Also, the worst time for the down-
load pulse to occur from the point of view of the battery was
near shadow entry.

Are these results obvious in retrospect? And if so, does this
render an automated search useless?

The author believes the answer to the second question is
“no.” Even if the results were obvious in advance: “obvious”
to one engineer may not be so obvious to another (perhaps
a customer!), so having a numerical study to support strong
intuition is usually welcome. Indeed, it is mandatory to
apply scepticism and intuition to the results of a numerical
study before they can be trusted. In other words, each
method is not trustworthy if used alone: both are needed to
confirm each other. More pragmatically and less philosoph-
ically, being able to trivially rerun an automated search
each time conditions or designs change has definite value.

ADVANCED TECHNIQUES

Further refinements of the search algorithms are possible,
but have not yet been explored nor implemented.

A near-term enhancement would be to interject a
Response Surface Model (RSM, Ref 11) after the LH scan.
An RSM is a simplified representation of the design space,

Table 3: Results of Hybrid LH/Optimization Method

Component

beta 
angle 
(deg)

scan 
angle 
(deg)

pulse 
start 
time 
(sec)

Peak 
Temp 
(K)

Time 
of 
Peak 
(sec)

Battery 47.9 0.8 1276 292.1 3678

Payload 73.5 17.3 7.1 303.7 774

Figure 4: Hot Case Orbital Temperatures of “Payload”

β = 73.5°

Figure 5: Hot Case Orbital Temperatures of Battery

β = 47.9°
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often in the form of a polynomial “curve fit,” that can be
used to rapidly search for an optimum solution without fur-
ther costly thermal simulations. In other words, data from
the LH scan can be used to arrive at an approximation of
the problem, which can be used to find an optimum, which
can in turn either be used as a final product or as an even
better starting point for a full optimization search.

Other enhancements are more revolutionary. For example,
instead of using uniform probability distributions, each
parameter can be sampled based on an underlying proba-
bility. For example, if the radar dish in the example problem
were to execute a slow sinusoidal sweep, it would spend
very little time pointing directly at the Earth and more time
at the extremes: the likelihood of the scan angle assuming
any one value is not the same as another value. Such an
enhancement is relatively easy to accommodate, providing
such statistical information is available or can be easily pro-
duced.

An even more revolutionary approach is to dispense with a
separate, distinct, worst-case search: to fold the uncertain-
ties and variations in environment and usage into the pro-
duction of the design itself. In other words, dispense with
the traditional approach of margin stack-up and worst-case
development in favor of optimizing a design based on over-
all reliability. Refer to Chapter 5 of Ref 10 for more details.
Such an approach eliminates both over and under design:
it avoids, for example, designing for a condition that is
nearly impossible to encounter and focuses instead on
more realistic (and therefore probable) scenarios.

Unfortunately, reliability-based design synthesis is still
computationally intractable for realistically complex prob-
lems. Its implementation also requires a change in infra-
structure, mindset, and perhaps even military and
commercial standards. Although it is being applied more
and more in limited situations (Taguchi Robust Design and
Six Sigma, for example: Ref 12, 13), it remains a technol-
ogy for the future. Nonetheless, it is important to maintain
ideals and to work steadily and patiently toward them.

CONCLUSIONS

Methods and algorithms for automating the search for
worst-case design scenarios have been presented using a
simplified sample case. A relatively simple and efficient
hybrid method has been recommended that greatly
reduces the required number of design point evaluations.

This approach is already available in prepackaged form in
commercial off-the-shelf software. However, it could also
be scripted relatively easily in order to be applicable to
other thermal analysis software, even if computational effi-
ciency were sacrificed by iteratively re-executing such soft-
ware.

Alternatively, one could employ high-resolution latin hyper-
cube scans alone (versus hybrid methods requiring an opti-
mization engine). This approach makes automated search
technology accessible to a wider audience. Even though it

represents a compromise, it is certainly preferable to the
prior state-of-the-art.
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DEFINITIONS, ACRONYMS, ABBREVIATIONS

CAD..................Computer Aided Design
CPV..................Common Pressure Vessel
FDM .................Finite Difference Modeling
FEM..................Finite Element Modeling
FF.....................Full Factorial
GMM ................Geometric Math Modeler (e.g., RadCAD®)
LH.....................Latin Hypercube
MLI ...................Multilayer Insulation
PC ....................Personal computer (e.g., Intel Pentium®

class)
RadCAD...........Radiation analyzer in Thermal Desktop
RADK ...............Radiation conductor (network element)
RSM .................Response Surface Model
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SINDA/FLUINT Thermal/fluid analyzer from C&R Technol-
ogies

SINDA.............. Thermal side of SINDA/FLUINT
SPV ................. Single Pressure Vessel
Thermal
Desktop®......... CAD-based FDM/FEM thermal modeling

environment from C&R Technologies
TMM ................ Thermal Math Modeler (e.g., SINDA)
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