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ABSTRACT

Loop heat pipes (LHPs) are used in multiple  terrestrial and space applications. Transient 
analysis of conventional and advanced loop heat pipes with complex radiators under 
varying conditions where the heat load and the effective sink temperature change in time 
can  be best accomplished using Thermal DesktopTM.

This paper presents a transient model of a LHP developed using Thermal Desktop™
(Sinda/Fluint). It includes the evaporator connected to the reservoir and condenser with fluid 
transport lines with bends, flow balancers, and connectors. The condenser is bonded to a 
honeycomb panel with two face-sheets spreading thermal energy across the radiating 
surfaces. The model was correlated to the thermal-vacuum test data.

The modeling provided better understanding of the critical transient fluid-flow mechanisms 
encountered in the LHP under transient operational conditions. Analysis of the numerical 
results shows that the secondary wick should be  transporting liquid from the reservoir to 
the primary wick during transient operation where the sink temperature is decreasing or the 
evaporator heat load is being reduced.  
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LHP typical configuration and operation
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MODELING INTENT AND IDEOLOGY

The secondary wick requirements result mainly from the fluid accumulation in the condenser 
affected by the decreasing heat sink temperature and/or decreasing heat load (rate of 
vaporization). Secondary wick design/geometry is not needed to calculate the secondary wick 
requirements.

The condenser/radiator is the component with the highest mass and surface area. The rate of the 
working fluid accumulation in the condenser depends on several factors and processes such as:

– Sink temperature variation

– Heat load (vaporization rate) variation

– Variation of the absolute temperatures and pressures

– Variation of the fluid thermophysical properties

– Conduction in the face sheets

– Back conduction

– Vapor breaking through the condenser into the reservoir

– Variation of the liquid subcooling coming to the reservoir due to the fluid accumulation and 
changes in the radiator temperature

– Parasitic heat inputs to the reservoir and liquid return line through radiation

– etc.

The LHP response to a cyclic heat input and environment precisely repeats itself after several 
cycles, essentially not depending on the initial conditions for the first cycle. 
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The main function of the 2ry wick is to compensate for the mass flow rate 
imbalance at the primary wick during fluid transients, by drawing additional liquid 
from the reservoir to the primary wick.

The fluid mass flow rate out of the primary wick is due to the  (a) vapor 
generated at the wick/wall interface flowing into the vapor transport line, 
mV(kg/s), and (b) vapor going into the evaporator core due to the “back 
conduction” QBC/hfg where QBC is the “back conducted energy” and hfg is the 
latent heat of vaporization. The liquid is returning to the primary wick through the 
bayonet with a variable mass flow rate of mL (kg/s),  bringing the subcooling to 
the reservoir, which can be approximated  as mLcpL(Tres-Tliq).

Note that the liquid can flow to the reservoir together with vapor if the condenser 
is “vapor-open” (Lv = 100%, X≥0). 

As soon as the radiator temperature is below the vapor temperature, there is 
always some liquid return to the reservoir, even if the condenser is “vapor-open”
(unless the  flow in the liquid return line stagnates.)

Liquid Mass Flow Rate in the Secondary Wick
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Based on the mass balance around the primary wick control volume:

mSW=  mV – mL + QBC/hfg, where

(mV – mL)=dMfluid_cond/dt + (mV - dMfluid_cond/dt)Xout

is the result of accumulation of the fluid in the condenser and non-zero quality of the 
flow at the condenser outlet Xout. Multiplying by hfg (latent heat of vaporization) and 
rearranging,

QSW = dMfluid_cond/dt hfg + QBC + (mV - dMfluid_cond/dt)Xout hfg      (1)

we derive the “secondary wick transport requirement, Qsw”. There are three components 
in Qsw due to (a) fluid accumulation in the condenser, (b) vaporization related to the 
back conduction, and  (c) vapor breaking through the condenser into the reservoir

Note that Qsw is an output of the transient model in terms of  power for the convenience 
of comparing to secondary wick capability. Qsw does not represent heat flow between 
the reservoir and evaporator, i.e., Qsw does not appear in the model energy balance for 
the evaporator and reservoir control volumes.

Definition of the Secondary Wick Requirement
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Description of the TD™Transient LHP Model

The Sinda/Fluint model simultaneously solves the flow momentum, energy, and mass 
conservation equations for the two-phase fluid flow.  It includes all three heat transfer 
mechanisms: convective, conductive, and radiative, as well as accounts for the phase 
change heat transfer. The pressure drops and heat transfer for the homogenous two-
phase flow are automatically calculated by the solver using the established correlations 
based on the local conditions.

There are more than 250 fluid lumps (and also 250 corresponding nodes) in the model 
in order to represent the condenser line and the transport lines in sufficient detail.

There are 400 nodes with corresponding surface areas representing the radiator and 
radiating to the heat sinks. 

The reservoir is represented as a tank with a given volume linked to the vapor space in 
the evaporator across the primary wick via CAPPMP and IFACE macros.

The fluid mass in the reservoir (as well as in the condenser) varies in time.

The evaporator heat load and temperatures of the two heat sinks vary in time.

The reservoir wall and evaporator wall have specified surface areas radiating to the 
corresponding (“top”) heat sink.

The flow quality for each lump is calculated by Sinda/Fluint based on the pressures, 
temperatures, and  lump energy balance.
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Components of the modeled LHP

Reservoir

Evaporator

Heat 

acquisition 

plate

Vapor 

transport 

line

Two parallel condensers 



An advanced weapon and space systems company

10

TOP VIEW OF THE MODEL
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ISOMETRIC VIEW OF THE MODEL

Liquid return line 
radiating to the top sink
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Transients during the 400-200-500 W power steps 
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Pressure transients during the power steps
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Transient LHP Model Correlation/Validation

Thermal-Vacuum test data provided by the 
customer were used to correlate/validate the 
transient LHP model

Only 1 LHP modeled

• Condenser mass for model = ½ actual 

condenser mass

Parameters considered during the 

correlation effort

• Adjusting surface emissivities

• Selecting correlation for the back 

conduction

• Introducing local hydraulic resistances for 

the two flow balancers 
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Correlation to the Thermal-Vacuum Test Data

The effective emissivity of the radiator surface was adjusted for the thermal-vacuum 

testing (lower than for the flight unit predictions).

The back conduction between the evaporator and reservoir was adjusted from the 

classical level to better match the temperature of the liquid return line measured 

during the thermal-vacuum tests.

The reservoir and evaporator temperatures used in the model are mass-averaged, 

while in  the test data these temperatures are calculated using outputs of several 

thermocouples. This might account for some difference between the predictions and 

measurements.
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Comparison/correlation with the TV test data for LHP 

A-2

Loop A-2 TV test data comparison with TD prediction for emissivity of 0.69
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Predicted TLRL and Lv match the test data reasonably well
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Comparison/correlation with the TV test data for LHP 

A-1

Loop A-1 TV test data comparison with TD predictions for emissivity of 0.69 
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The predicted vapor-open condenser length better matches data for LHP A-2. The 

measurements were done with the accuracy of 20%. The two LHPs have different Lv.
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Secondary wick requirements of 200 W during the power steps
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Secondary Wick Requirements during gradual 
decrease of the heat load and heat sink temperature

The secondary wick should transport liquid with the mass flow rate 

equivalent of 100 W for this particular transient case.
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SUMMARY

•Thermal DesktopTM transient LHP model was 

correlated to the thermal-vacuum test data

•The secondary wick requirements can be rather high 

during transient situations where the heat load and/or 
the heat sink temperature  are decreasing

•Transient modeling of a conventional LHP is needed 

to account for the transient phenomena at the design 

stage, such as the pressure drops during the power 

cycling, higher rate of vaporization due to an attached 
thermal mass, etc.

•Transient  modeling is necessary for temperature 

control systems using LHPs


