Thermal Model Development for Ares I-X

TFAWS-08-1018

Ruth M. Amundsen, Joe Del Corso
NASA Langley Research Center
TFAWS 2008
August 21, 2008

www.nasa.gov
Outline

- Background
- Modeling Process
- Lessons Learned
- Aeroheating Application
- Conclusions
Ares I-X: Background

♦ Flight test vehicle for CLV
♦ Operational first stage (SRB)
♦ Active Roll Control System (RoCS) on Upper Stage
♦ Upper Stage, Crew Exploration Vehicle, and Launch Abort System portions
 • Inactive with representative mass and OML
♦ Scheduled launch from KSC April 15, 2009
♦ Developed and built by multiple organizations
 • JSC, MSFC, LaRC, GRC, KSC, ATK, LMA/ULA, TBE
♦ Purpose is to test and measure launch and separation of CLV-style vehicle
Thermal Model Development

♦ Full vehicle model
 • Model in Thermal Desktop 5.1, Mechanical Desktop 2008
 • Model template and code for applying aeroheating from MSFC
 • CM/LAS and FS models developed at LaRC
 • USS model from GRC
 • FSAM model from LMA
 • RoCS model from TBE
 • Model integration and runs at LaRC

♦ Temperatures mapped to NASTRAN for thermal stress analysis
Thermal Model Details

♦ Full vehicle model includes:
 • Full 3D exterior vehicle geometry and mass
 • Temperature dependent material properties
 • Solar and earth flux, ambient air and winds
 (planet modeling method in TFAWS-08-1017)
 • Interior air conduction, convection
 • Internal and external radiation
 • Contact and air exchange between segments
 • Through-thickness gradients
 • Ground structures
 • Ascent aeroheating
 • Avionics size, mass, power
 • ECS, fan, avionics timelines
 • Personnel and lighting powers
 • Aft skirt purge, igniter heater, propellant temp
 • Hot/cold cases

♦ 7000 nodes

♦ 1,781 klb (2% low)
Thermal Cases

♦ Vehicle Assembly Building (VAB)
 • Ambient from measured thermal data
 • Can run with ECS and avionics on or off
 • Sets start temperature for rollout

♦ Rollout
 • Run for 24 hr following 24 hr in VAB with ECS off
 • Solar and earth radiation load

♦ On-pad
 • ECS/fan functionality, aft skirt purge
 • Solar and earth radiation, avionics power timeline

♦ Ascent
 • Ascent aeroheating, avionics heating
 • Runs 125 seconds

♦ Descent
 • FS only; aeroheating, avionics heating
Modeling Lessons Learned

♦ Import of multiple submodels led to greater understanding of how pre-work and model standardization save integration time

♦ Naming
 • Standardized (e.g., 1st 3 characters of submodel name define segment)
 • Simple
 • Applies to submodels, layers, radiation groups, case sets

♦ Limit number of submodels, layers

♦ Comments

♦ Utilities>>Notes to comment model

♦ Calculated expressions

♦ Standard coordinate system

♦ Boxes instead of separate surfaces
Pre-modeling Coordination

♦ Pre-define
 • Software and version
 • Units
 • Symbols
 • Symbol Groups
 • Coordinate system
 • Planet modeling method
 • Deliverables

♦ Use template model file if possible, with
 • Units
 • Symbols
 • Symbol Groups
 • Coordinate system(s)
 • Material and optical properties
 • Common logic blocks
Model Checking

♦ Verify submitted model before importing into integrated model
 • View by thermal & optical props, radiation groups, etc.
 • Run a mass check and make sure the model mass is correct
 • Output SINDA data to check
 • Look for duplicate nodes
 • View active sides
 • Check units (both thermal and fluid submodels)
 • Run submitted model and check results against those submitted
Model Import Process

♦ Run check cases of both integrated and submitted models beforehand; compare to post-integration results
 • SUBMAP or similar useful to check heat flow between submodels

♦ Multiple steps necessary to ensure correct transfer

♦ Detailed export/import process steps given in manuscript
 • Tip: to bring over a contactor or conductor and re-attach it, temporarily attach it to something exported

♦ Consider:
 • Symbols
 • Units and coordinate system
 • Properties and aliases
 • Radiation groups
 • Contactors
 • Correspondence data
 • Logic Manager objects
 • Orbits and case sets
 • Layers

Fold contactor back to imported part to bring over
Model Logic

♦ Logic blocks used for all scenarios across multiple cases

♦ Logic actions based on symbols
 • Hot/cold case, location, hold, abort
 • Sequencing times, power levels
 • ECS flow and temperature
 • Number of personnel

♦ Simplifies
 • Switch between hot/cold case
 • Launch time change
 • Timeline changes
 • Power level changes
 • Sequencing updates

♦ Ares I-X examples
 • STRTIME, RUNTIME, OFFSETL (launch time of day), TIME2L (time remaining until launch), sw_ & pw_ for avionics switching and power, casedef, loc_def, casehold, caseabt, SKY_TMP, AIR_TMP, GND_TMP
 • Symbol naming guidelines (th_, cc_, etc)
Restarts with Fluid Lumps

- Standard restarts use only thermal node temperatures in restart
- Ares I-X incorporates huge air volumes - 100’s of lbs of air
 - Important to capture air state between cases
- Ares I-X method modified to include fluid temps in restart
- TD 5.2 will include this option

![Graphs showing temperature changes over time](image)

0 1 0 2 0 3 0 4 0 5 0 6 0
Time [sec]

<table>
<thead>
<tr>
<th>FS_FLUID.TL776</th>
<th>FS_FLUID.TL778</th>
<th>FS_FLUID.TL875</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 1 0 2 0 3 0 4 0 5 0 6 0
Time [sec]

<table>
<thead>
<tr>
<th>FS_FLUID.TL776</th>
<th>FS_FLUID.TL778</th>
<th>FS_FLUID.TL875</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Standardization

♦ Version of software standardized between model developers
 • Thermal Desktop
 • AutoDesk

♦ Compiler version also critical
 • E.g., built-in (Lahey) versus Intel compilers
 • Compiler settings and defaults
 • Differing compilers between organizations led to different model behavior
Aeroheating Application

♦ Aeroheating applied to Ares I-X during ascent and descent

♦ Aeroheating loads supplied in MINIVER text files
 • Enthalpy and convective coefficient at three wall temps at each time
 • Times in 0.5 to 5 sec increments
 • 2000 body points over vehicle

♦ User logic applied heating during Sinda/Fluint run
 • Interpolation for time, wall temperature

♦ Manual mapping of body points to TD model time-consuming

♦ BPMapper code developed for automated mapping
BPMapper

- Maps each TD node to closest body point (BP)
- Divides nodes into clean skin and protuberance for mapping
- Select coordinate transformation
- Define custom mappings
- Lists:
 - Distance and BP for each node
 - All nodes exceeding pre-set error distance
- Rapid remapping for new mesh or model import
- Graphical verification critical
 - BPMapper writes file for graphical verification of BP mapping
 - Sinda/Fluint run writes file for graphical verification of aeroheating map
 - Crucial to verify mapping and aeroheating assumptions
Boundary Condition Mapper for CFD

♦ New feature in TD 5.2 for interpolated heating from CFD file
 • Boundary Condition Mapper (BCM)

♦ Map2CFD code developed at LaRC
 • Imports Tecplot file format
 • Scale, invert, combine multiple geometries
 • Outputs file for TD BCM use

♦ Aeroheating loads
 • Used for thermal run
 • Automatic interpolation for location, time, wall temperature

♦ Benefits
 • Use CFD results directly
 • Avoid mapping single BP to location
Conclusions

♦ Pre-model development coordination crucial
 • Use template file

♦ Model standardization saves time and headaches

♦ Consistent model import process developed

♦ Powerful model logic facilitates analysis

♦ Improved aeroheating options developed
 • BPMapper
 • Map2CFD

♦ Graphical aeroheating verification reduces errors

♦ Lessons learned on Ares I-X can be applied to other missions involving import of multiple models
 • Critical for future Constellation work
 • Useful for others performing large-scale analysis
Acknowledgments

♦ Aeroheating application software and initial model structure supplied by Mark Wall of NASA MSFC, from CLV US model
♦ USS model developed by Josh Giegel, Marcus Studmire, Jim Yuko, Bob Christie and Jim Myers of NASA GRC
♦ RoCS submodels supplied by Preston Beatty (TBE)
♦ Avionics submodels supplied by Gary Holmstead (LMA)
♦ The expertise of MSFC personnel in supplying aeroheating (Mark D’Agostino, Craig Schmitz, Jason Mishtawy, and Colin Brooks) is gratefully acknowledged
♦ The technical support from the team at Cullimore & Ring was outstanding
♦ The assistance of Tory Scola at NASA LaRC in development of the BPMapper code is gratefully acknowledged