

Crew Exploration Vehicle Composite Pressure Vessel Thermal Assessment

Laurie Y. Carrillo Ángel R. Álvarez-Hernández Steven L. Rickman NASA Johnson Space Center

Thermal & Fluids Analysis Workshop (TFAWS 2008) San Jose State University, San Jose, CA August 18-22, 2008

- Background
 - Thermal analysis of a composite pressure vessel (CPV) was undertaken in support of an NESC-sponsored pathfinder project
- Procedure
 - A finite element translation of the CPV was integrated into an existing CEV Thermal Math Model (TMM) based on the 605 baseline configuration
 - Four orbital cases have been analyzed
- Results
 - Graphical steady state temperature profiles
 - Steady state temperature in NASTRAN-compatible TEMP card format for direct input into a stress model
- Conclusion
 - A qualitative assessment of make-up energy and relevant recommendations are presented

Background

Orion CEV spacecraft

Orion CEV spacecraft with outer skin removed revealing pressure vessel

- The composite pressure vessel cross section is composed of an inner and outer face sheet (FS), and honeycomb (HC) section
- The finite element translation of the CPV assumed shell elements for the CPV
- This neglects through-the-thickness temperature gradients
- This is not necessarily a valid assumption for the CPV

Honeycomb (HC), inner and outer face sheet (FS) configuration

- The planar shell surfaces were extruded into solid elements
- An aggregate HC/FS conductance was calculated using a JSC thermal math model
- This allows for through-the-thickness temperature gradients
- Calculated values are based on vented HC

Thermal Desktop pressure vessel model building procedure

Optical Property Assumptions Infrared Solar **Material Used** Absorptivity, a Emissivity, ε **TPS/Backshell Structure** Outer BS Reaction Cured Glass (RCG) 0.85 0.85 0.85 0.85 Outer HS Reaction Cured Glass (RCG) Inner FS Titanium N/A 0.2 **CPV** Tape (M55J) Inner FS N/A 0.72 Kapton Film, A Backing Outer BS 0.71 N/A

- Active Thermal Control System (ATCS)
- Avionics
- Communications
- Crew Systems
- Electrical Power
- Environmental Control and Life Support System (ECLSS)
- Guidance, Navigation, and Control (GN&C)
- Landing and Recovery System (LRS)
- Mechanical System
- Propulsion
- Structural

Low Impact Docking System (LIDS) TMM

Thermal Protection System (TPS) TMM

Assumed longeron structural support

Small arrows represent contact for inner BS to CPV

Location of air nodes and cold plates

Main air node connections to CPV wall and system surfaces

Port, starboard, center, and under crew stowage air node connections

- Make-up energy is the required energy applied to specific locations within the CPV to maintain the inner wall temperature above the 61.5°F (16.4°C) dew point
- Make-up energy differs from heater power in that heater zoning is not taken into consideration
- Specialized SINDA code was written and incorporated into the TMM to calculate the make-up energy

- An initial steady state solution is made with unconstrained inner walls (using SINDA diffusion nodes) to calculate CPV temperature distribution
- Each node with a temperature below the threshold of 61.5°F (16.4°C) is identified
- These identified nodes are redefined as heater nodes set at a boundary of 61.5°F (16.4°C) while the remaining nodes remain unconstrained
- A final steady state solution is made including heater nodes to determine the make-up energy

Analysis

Case	Orientation	Natural Environments
Lunar transit, broad side to sun	The main axis of the vehicle is perpendicular to the sun vector. Half of the vehicle receives full, constant sun, the other half views deep space.	Hot solar flux. No albedo or Outgoing Longwave Radiation (OLR).
Lunar transit, aft to sun	The SM main engine faces the sun. Thus the entire CM is continuously shaded and sees deep space.	Cold solar flux. No albedo or OLR.
Low Lunar Orbit (LLO), nose to sun, Beta (β)=90°, 90 km altitude above lunar surface	The hatch/docking mechanism on the CM faces the sun full on.	Hot solar flux, albedo, and OLR.
LLO, aft to sun, β =90°, 90 km altitude above lunar surface	The SM main engine faces the sun. Thus the entire CM is continuously shaded and sees deep space. There is minimal albedo and OLR heating.	Hot solar flux, albedo, and OLR.

 Steady State Temperature Results, Lunar Transit, Broadside to Sun, Minimum Inner Wall Temperature ≥ 61.5°F (16.4° C)

 Steady State Temperature Results, Lunar Transit, Aft to Sun, Minimum Inner Wall Temperature ≥ 61.5°F (16.4°C)

 Steady State Temperature Results, Low Lunar Orbit, Nose to Sun, β=90°, Minimum Inner Wall Temperature ≥ 61.5°F (16.4°C)

 Steady State Temperature Results, Low Lunar Orbit, Aft to Sun, β=90°, Minimum Inner Wall Temperature ≥ 61.5°F (16.4° C)

Results

 Effect of Make-Up Energy, Steady State Temperature Results, Lunar Transit, Broadside to Sun, β=90°, Minimum Inner Wall Temperature ≥ 61.5°F (16.4°C)

Results

 Effect of Make-Up Energy, Steady State Temperature Results, Low Lunar Orbit, Aft to Sun, Minimum Inner Wall Temperature ≥ 61.5°F (16.4°C)

- Qualitative Overview
 - Limited heater zoning data
 - Enables an assessment of observed trends
- CPV requires significantly less make-up energy to hold the inner wall temperature above 61.5°F (16.4°C) compared to aluminum baseline
 - An average 60% decrease
 - LLO nose to sun: 100% decrease (No make-up energy required)
 - Transit broadside to sun: 70% decrease
 - Transit aft to sun, LLO aft to sun: 30-40% decrease

- Temperature gradients indicate possible performance issues from thermomechanical stress
 - Recommend further investigation to quantify thermo mechanical stresses
- Only local make-up energy was considered
 - Recommend a heater zoning study to determine configuration of the required heaters to enable quantitative heat power assessment

- Mike Kirsch, NESC Principal Engineer
- Daniel Polis, NASA Goddard
- Jim Jeans, Genesis Engineering Solutions
- Stephen Miller, CEV Passive Thermal Control System Manager, NASA Johnson
- Alvaro Rodriguez, NASA Johnson
- Mavis Brandt, NASA Johnson
- Stephanie Matyas, NASA Johnson