
Crew Exploration Vehicle Composite 

Pressure Vessel Thermal Assessment 

Laurie Y. Carrillo
Ángel R. Álvarez-Hernández

Steven L. Rickman
NASA Johnson Space Center

Thermal & Fluids Analysis Workshop (TFAWS 2008)

San Jose State University, San Jose, CA
August 18-22, 2008



Thermal & Fluids Analysis Workshop 2008 2

Presentation Contents

• Background
– Thermal analysis of a composite pressure vessel (CPV) was 

undertaken in support of an NESC-sponsored pathfinder 
project

• Procedure
– A finite element translation of the CPV was integrated into an 

existing CEV Thermal Math Model (TMM) based on the 605 
baseline configuration

– Four orbital cases have been analyzed

• Results
– Graphical steady state temperature profiles 
– Steady state temperature in NASTRAN-compatible TEMP 

card format for direct input into a stress model

• Conclusion
– A qualitative assessment of make-up energy and relevant 

recommendations are presented



Background
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Orion CEV spacecraft

Pressure 

vessel

Orion CEV spacecraft with 

outer skin removed 

revealing pressure vessel
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Background

• The composite pressure vessel cross section is composed 
of an inner and outer face sheet (FS), and honeycomb 
(HC) section

• The finite element translation of the CPV assumed shell 
elements for the CPV

• This neglects through-the-thickness temperature gradients

• This is not necessarily a valid assumption for the CPV

Honeycomb (HC), inner and outer face sheet (FS) configuration
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Thermal Math Model

• The planar shell surfaces were extruded into solid 
elements 

• An aggregate HC/FS conductance was calculated using a 
JSC thermal math model 

• This allows for through-the-thickness temperature 
gradients

• Calculated values are based on vented HC

Thermal Desktop pressure vessel model building procedure
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Thermal Math Model 

Material Used
Solar 

Absorptivity, α

Infrared 

Emissivity, εεεε

TPS/Backshell

Structure

Outer BS Reaction Cured Glass (RCG) 0.85 0.85

Outer HS Reaction Cured Glass (RCG) 0.85 0.85

Inner FS Titanium N/A 0.2

CPV

Inner FS Tape (M55J) N/A 0.72

Outer BS Kapton Film, A Backing N/A 0.71

Optical Property Assumptions
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Thermal Math Model

• Active Thermal Control System (ATCS)

• Avionics

• Communications

• Crew Systems

• Electrical Power

• Environmental Control and Life Support System 
(ECLSS)

• Guidance, Navigation, and Control (GN&C)

• Landing and Recovery System (LRS)

• Mechanical System

• Propulsion

• Structural
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Thermal Math Model
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Thermal Math Model
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Thermal Math Model

Low Impact Docking 

System (LIDS) TMM

Thermal Protection 

System (TPS) TMM
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Thermal Math Model

Assumed longeron

structural support

Location of air nodes and 

cold plates
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Thermal Math Model

Main air node connections 

to CPV wall and system 

surfaces

Port, starboard, center, 

and under crew stowage 

air node connections
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Bottom Air

Node

Center Air Node

Port Air Node
Starboard

Air Node

Bottom Air

Node

Center Air Node
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Center Air Node

Port Air Node
Starboard

Air Node
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Analysis

• Make-up energy is the required energy 
applied to specific locations within the CPV to 
maintain the inner wall temperature above the 
61.5°F (16.4°C) dew point 

• Make-up energy differs from heater power in 
that heater zoning is not taken into 
consideration 

• Specialized SINDA code was written and 
incorporated into the TMM to calculate the 
make-up energy
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Analysis

• An initial steady state solution is made with 
unconstrained inner walls (using SINDA 
diffusion nodes) to calculate CPV temperature 
distribution 

• Each node with a temperature below the 
threshold of 61.5°F (16.4°C) is identified

• These identified nodes are redefined as heater 
nodes set at a boundary of 61.5°F (16.4°C) 
while the remaining nodes remain unconstrained 

• A final steady state solution is made including 
heater nodes to determine the make-up energy  
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Analysis

Case Orientation Natural Environments

Lunar transit, broad 

side to sun

The main axis of the vehicle is 

perpendicular to the sun vector.  

Half of the vehicle receives full, 

constant sun, the other half views 

deep space.

Hot solar flux.  No albedo

or Outgoing Longwave

Radiation (OLR). 

Lunar transit, aft to 

sun

The SM main engine faces the sun.  

Thus the entire CM is continuously 

shaded and sees deep space.

Cold solar flux. No albedo

or OLR.  

Low Lunar Orbit 

(LLO), nose to sun, 

Beta (β)=90°, 90 

km altitude above 

lunar surface

The hatch/docking mechanism on 

the CM faces the sun full on.

Hot solar flux, albedo, and 

OLR.  

LLO, aft to sun, 

β=90°, 90 km 

altitude above lunar 

surface

The SM main engine faces the sun.  

Thus the entire CM is continuously 

shaded and sees deep space.  There 

is minimal albedo and OLR 

heating.

Hot solar flux, albedo, and 

OLR.  
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Results

• Steady State Temperature Results, Lunar Transit, 
Broadside to Sun, Minimum Inner Wall Temperature 
≥ 61.5°F (16.4° C)

148°F 

(64°C)

Longeron

location
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Results

• Steady State Temperature Results, Lunar Transit, Aft 
to Sun, Minimum Inner Wall Temperature ≥ 61.5°F 
(16.4°C)

5°F 

(-15°C)

Through thickness gradient: 

∆T=56.5°F (∆T=31.4°C) 

Location of 

internal 

cold plate 

set at 85°F 

(29°C)
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Results

• Steady State Temperature Results, Low Lunar Orbit, 
Nose to Sun, β=90°, Minimum Inner Wall 
Temperature ≥ 61.5°F (16.4°C) 

Peak temperatures 

at nose
Longeron

location
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Results

• Steady State Temperature Results, Low Lunar Orbit, 
Aft to Sun, β=90°, Minimum Inner Wall Temperature 
≥ 61.5°F (16.4° C) 

10°F

(-12°C)

Through thickness gradient: 

∆T =51.5°F (28.4°C).

Location of 

internal 

cold plate 

set at 85°F 

(29°C)
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Results

• Effect of Make-Up Energy, Steady State Temperature 
Results, Lunar Transit, Broadside to Sun, β=90°, 
Minimum Inner Wall Temperature ≥ 61.5°F (16.4°C)

 Without Make-Up Energy With Make-Up Energy 

47°F 

(8°C) 

-30°F 

(-34.4°C) 
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Results

• Effect of Make-Up Energy, Steady State Temperature 
Results, Low Lunar Orbit, Aft to Sun, Minimum Inner 
Wall Temperature ≥ 61.5°F (16.4°C) 

 Without Make-Up Energy    With Make-Up Energy 

Cold spots 

alleviated with 

make-up energy
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Conclusion

• Qualitative Overview
– Limited heater zoning data

– Enables an assessment of observed trends

• CPV requires significantly less make-up 
energy to hold the inner wall temperature 
above 61.5°F (16.4°C) compared to aluminum 
baseline 
– An average 60% decrease

– LLO nose to sun: 100% decrease (No make-up 
energy required)

– Transit broadside to sun: 70% decrease

– Transit aft to sun, LLO aft to sun: 30-40% decrease
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Recommendations

• Temperature gradients indicate possible 
performance issues from thermomechanical
stress
– Recommend further investigation to quantify 
thermo mechanical stresses

• Only local make-up energy was considered
– Recommend a heater zoning study to determine 
configuration of the required heaters to enable 
quantitative heat power assessment
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