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Abstract 
Historically, thermal/fluid modeling began as a means of 

validating and sometimes correcting passively cooled designs 
that had been proposed by nonspecialists in heat transfer and 
fluid flow. As dissipation fluxes have risen, and as air cooling 
reaches the limits of its usefulness, involvement of thermal 
engineers is required earlier in the design process. Thermal 
engineers are now commonly responsible for sizing and 
selecting active cooling components such as fans and heat 
sinks, and increasingly single and two-phase coolant loops. 

Meanwhile, heat transfer and fluid flow design analysis 
software has matured, growing both in ease of use and in 
phenomenological modeling prowess. Unfortunately, most 
software retains a focus on point-design simulations and 
needs to do a better job of helping thermal engineers not only 
evaluate designs, but also investigate alternatives and even 
automate the search for optimal designs. 

This paper shows how readily available nonlinear 
programming (NLP) techniques can be successfully applied to 
automating design synthesis activities, allowing the thermal 
engineer to approach the problem from a higher level of 
automation. This paper briefly introduces NLP concepts, and 
then demonstrates their application both to a simplified fin 
(extended surface) as well as a more realistic case: a finned 
heat sink. 

Keywords: Optimization, thermal analysis, parametric 
modeling, design automation, design synthesis. 

Beyond Point Design Simulation 
Given input powers, environments, and thermal 

resistances, temperature responses can be calculated. Given 
fan curves and filter flow resistances, pressures and flowrates 
can be calculated. 

The above solution sequences represent what is 
convenient to solve numerically, but rarely do those 
sequences directly answer the design questions of interest to 
thermal engineers. Unfortunately, such narrow “point design 
simulation” formulations are all that is available in most 
thermal/fluid analysis software. What is needed is design 
software. 

For example, most available software allows an engineer 
to build a detailed model of a single specific design, then ask 
simple questions such as “How hot does this get under this 
steady-state condition, or during this transient event profile?” 
When the answer is “too hot,” the engineer must try another 
design, often spending considerable time developing a new 
model before being able to reevaluate the new design. 

It has been so many years since computer-aided analysis 
solutions have been available, and so many new engineers 
have joined the community during that time that many have 

perhaps become accustomed to what software can do instead 
of what it should do: help produce a design using point-
design evaluations as mere subtasks of this larger purpose 
rather than as an end to themselves. The purpose of this paper 
is to show how this ideal is achievable not with artificial 
intelligence and not by abandoning all the tools and 
capabilities that exist, but by adding a higher-level design 
“search engine.” The resulting design synthesis environment 
allows the engineer to ask more powerful questions such as 
“What is the minimum size fan I should use, and where 
should I locate the power conditioning unit such that 
temperatures of the processor do not exceed its limits under 
three diverse usage/environment scenarios?” 

Nonlinear Programming: Generalized Tasking 
Nonlinear programming (NLP) techniques attempt to find 

the maxima and minima of an objective function in N 
dimensions, while obeying arbitrarily complex constraints. 
Many algorithms exist for solving such problems (Ref 1-9), as 
do several off-the-shelf software packages. For example, the 
Solver module in Microsoft’s Excel® spreadsheet software is 
representative of this class of algorithm. 

Formal mathematical descriptions of NLP techniques are 
not necessary to understand their importance to automating 
thermal/fluid design tasks. Rather, it is important to 
understand the four parts of a optimization task, as listed 
below (and as depicted in Figure 1): 

1. Objective function: an arbitrarily complex figure of 
merit to be maximized or minimized. 

2. Design variables: the parameters whose values at the 
optimum point need to be determined: the degrees of 
freedom that can be adjusted to achieve the objective. 

3. Constraints: arbitrarily complex relationships that 
distinguish feasible design points (sets of values of 
design variables) from useless ones. 

4. Evaluation procedure: the generation of current 
values of the objective function and the constraint 
functions given a current set of design values. 

While this paper concentrates on the application of NLP 
technology to design optimization, the math underlying NLP 
can be applied to a wide variety of tasks: it is a generalized 
means of defining a complex task or search. 

For example, References 10 and 11 document how NLP 
technology (and other statistical design techniques) can be 
applied to automatically calibrating thermal/fluid models to 
test data.  Reference 12 describes how NLP techniques were 
applied to the generation of compact models. 

As another example, NLP algorithms can be applied to 
generating worst-case design scenarios. In this case: 



1. The objective function is the temperature of some 
component to be maximized (“find the hot case”) or 
minimized (“find the cold case”). 

2. The design variables are the uncertainties. Especially 
common are environmental uncertainties such as 
ambient temperature, humidity, pressure (or altitude 
for avionics applications), and orientation (for aircraft 
and spacecraft applications). 

3. The evaluation procedure might consist of a steady-
state thermal/fluid analysis or a transient scenario that 
yields the temperature of critical components, given 
specific values of uncertainties (“design variables”) as 
inputs. 

Note that constraints are optional, and are absent in the 
above example. 

 

 
Figure 1: Four Concepts in Optimization 

 

Applying NLP to Design Synthesis 
NLP technology is easily adapted to automated design 

synthesis, and several packages exist that are specifically 
intended for application to optimization of engineering 
designs. 

As applied to design synthesis, the four components of 
NLP are as follows: 

1. The objective function is a figure of merit that makes 
one design better than another. It might be minimum 
mass or cost, or maximum performance. It might even 
be a weighted combination of several factors. For any 
particular trial design, however, it will have a singular 
(scalar) value. 

2. The design variables are the degrees of freedom 
allocated to exploring the design space: those factors 
that are allowed to change to try to improve the 
objective function: dimensions, properties, thermo-
static set points, fan speeds, PID controller settings, 
heater power, etc. Each trial design is identified by 
specific values of each design variable: a single 
design vector in N-dimensional design space, where 
N is the number of design variables. 

3. Constraints are those rules or threshholds that 
distinguish a viable or feasible design from a useless 
one. These might be arbitrarily complex limits on 
either the design variables or on the performance 
metrics of the candidate design. For example, “reject 
a design that exceeds 115°C junction temperature” or 
“only accept a fan power input of 20W or less.” As 
these examples show, constraint functions are often 
expressed by inequalities. Note that constraints are 
optional, but that most realistic engineering problems 
are heavily constrained. In fact, it is common to 
initially forget constraints and to have to add more 
constraints to yield a useful answer. 

4. The evaluation procedure might consist of a steady-
state thermal/fluid analysis or a transient scenario that 
yields the temperature of critical components, given 
specific values of design variables as inputs. 
Specifically, the evaluation procedure consists of any 
calculations that yield the current values of the 
objective function and any constraint functions given 
trial values of design variables. Sometimes these 
calculations are trivial, and sometimes they require 
several steady-state or transient solutions of a 
complex model using a thermal/fluid analyzer. 

Two examples are provided to help illustrate these 
concepts. 

Example: Sizing a Fin (Extended Surface) 
To apply optimization theory to a specific and simple 

thermal problem, consider a two-sided rectangular aluminum 
(165 W/m-K conductivity) fin with a constant root 
temperature (100°C) in a combined convection and radiation 
environment (to a constant ambient temperature of 20°C). The 
emissivity of the fin is 0.2 and the convective environment is 
assumed constant at 10 W/m2-K. 

The design question to be asked is: “What is the minimum 
weight fin that can reject 25W, assuming the width (W) is 
equal to 10cm?” 

The four parts of the problem are itemized as follows: 
1. The objective function (O) is simply the mass or 

equivalently volume of the fin: the length (L) times 
the width (W) times the thickness (T) as depicted in 
Figure 2. In other words, O = L*W*T or even O = 
L*T since W is constant. 

2. The design variables are the two variable dimensions 
of the fin: L and T. 

3. A single constraint is applied: the power flowing 
from the root must be at least 25W. 

4. The evaluation function might be supplied by a 
closed form solution, but assuming the engineer had 
been out of school for a few years and had access to 
a thermal analyzer, a finite element or finite 
difference model could be quickly built. A 
parametric 1D finite difference SINDA/FLUINT 
model (Ref 13) was used to generate the results 
discussed below. 

 



Figure 2: Geometry for Sample Fin 
 

In about 30 to 40 evaluations of candidate designs (the 
exact number is sensitive to the initial conditions), using NLP 
algorithms derived from Reference 8, a result is found: 
L=21cm, and T=3.3mm. As might be expected intuitively, the 
constraint of 25W is active: the final design rejects exactly 
25W. (In a more realistic case with thousands of constraints, 
only a few will be “active:” influencing the final answer.) 

Once a parametric model has been built, many alternate 
questions could be posed. For example: “What is the 
minimum mass fin that rejects 25W with a root temperature of 
no more than 100°C?” This yields the same answer as the 
previous question, but mathematically it is a different 
optimization problem. Other completely different problems 
include: 

1. What is the minimum mass fin that has a fin 
effectiveness of at least 85%? 

2. What is the smallest volume fin varying the width 
and length but keeping the thickness constant? 

3. What is the maximum ambient temperature that can 
be withstood without the root exceeding 125°C, nor 
the width exceeding 25cm, nor the volume of the fin 
exceeding 50cc? 

Optimizations could themselves be a subproblem of an 
even larger consideration. For example: “Plot the optimum 
lengths and thickesses for a range of widths from 5cm to 
25cm.” 

Uncertainties and tolerancing can also be included when 
evaluating optimum designs (Ref 13). For example, consider 
that the emissivity and ambient temperature are not 
deterministic but are instead given by probability distributions 
or other tolerancing. In this case, a reliability estimation 
(based on statistical methods, Ref 10) can be embedded in the 
evaluation procedure for candidate designs. One might then 
find the minimum weight fin that has 99% chance of success 
(i.e., reliability), or one might estimate the allowable tolerance 
on emissivity and ambient temperature. 

Example: Designing a Ducted Heat Sink with Fan 
To illustrate the utility of automated design synthesis on a 

realistic application, consider a component dissipating 25W 

that is located on a 70mm by 100mm by 3mm copper plate. 
The plate is bonded to 25mm tall aluminum fins, forming a 
ducted (enclosed) heat sink cooled by air from a fan. 

In the hot case ambient environment (38°C), the initial 
design is not quite able to keep the component below its 
maximum temperature of 60°C with an inlet air velocity of 2 
m/s. The initial design and the temperature gradients are 
displayed as Figure 3. 

Optimization was used to find a better design that met the 
same performance objectives and that occupied the same 
70x100mm footprint. Three “design variables” were chosen: 
(1) the thickness of the copper baseplate, (2) the height of the 
aluminum fins, and (3) the inlet air velocity provided by the 
fan. Reasonable limits were placed on the possible range of 
variation of these variables (e.g., 0.1 m/s to 4 m/s for the air 
velocity). While the number of fins could have been varied 
along with their thickness, for simplicity these variations were 
not explored. Instead, the number of fins was kept constant 
and the thickness of the fin was made proportional to its 
height as a structural integrity constraint. 

In addition to “side constraints” on the possible range of 
variation of the three design variables, a “performance 
constraint” was also imposed: the temperature of the 
dissipative component was specified as not to exceed 60°C. It 
should be noted that, in the course of exploring the design 
space, this threshhold is occasionally violated (since the 
thermal/fluid software cannot know that the trial design is 
infeasible until it is attempted). All that this constraint 
guarantees is that the final design produced by the 
optimization algorithm will meet this criterion. 

While it may be obvious that a design that fails to provide 
adequate rejection is infeasible, the choice of what consistutes 
a “better” design is complex and perhaps subjective, and yet it 
must still be posed as numerical value for each trial design. 
Such an “objective function” or figure of merit might include 
quantified considerations of cost, manufacturability, 
reliability, etc. For this design study, it was decided to find 
the smallest suitable design. 

The selected objective function included not only the 
structural weight of the fins and baseplate, it also included a 
penalty function for a large fan to avoid designs that required 
unrealistically high air velocities in order to satisfy the 
thermal design requirements. This fan penalty function was 
based upon the electric power required by the fan: G*ΔP/η, 
where G is the volumetric flowrate (m3/s), ΔP is the fin total 
pressure drop (Pa), and η is the fan efficiency (about 40% in 
this case). In order to be summed with the structural mass, 
this power penalty was converted into an effective mass using 
an estimate of the “mass cost” of the power in terms of 
batteries, etc. Such complex and subjective manipulations are 
commonly done in most trade-off studies. Nonetheless, it is 
important to remember that a reformulation of this objective 
function would yield a different design. 
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Figure 3: Initial Configuration/Performance of Heat Sink (Cover Removed) 

 
The “evaluation procedure” consists of a single 

straightforward steady state solution: given the current value 
of the fin height, the base thickness, and the air velocity, find 
the temperature of the component, the total pressure drop 
through the fins, and the volumetric flowrate through the fins. 
The current mass of the fins and plate are also calculated, 
although this calculation does not require a thermal/fluid 
solution. The temperature of the component is used to 
compare against the sole constraint (60°C), whereas the 
pressure drop, volumetric flowrate, and structural mass are 
used to calculate the current value of the objective function. 

This problem was posed using Thermal Desktop® and 
FloCAD® (Ref 15, 16), with SINDA/FLUINT providing both 
the solution engine and the built-in NLP module. Again using 
the sequential linear programming (SLP) algorithm (Ref 8), 
an optimum design was found after automatically exploring 
72 trail designs.1 The total wall clock time was on the order of 
5 to 10 minutes on a 1 GHz PC. 

The initial and final design are summarized in Table 1, 
and the final design is depicted in Figure 4 (note that the 
thickness of the baseplate does not appear to change since it is 
a 2D CAD object: its thickness varies in the thermal model 
but not in the drawing). 

                                                 
1 The actual number of evaluations required can vary depending on the 

initial conditions, the number of design variables, the NLP algorithm 
employed, the amount of computational noise present in the underlying 
solution, etc. Typical values range from 30 to 300. Given slight variations in 
this problem, the range was about 40 to 100. 

As shown in Table 1, the NLP solver was able to reduce 
the objective function by 10%, resulting in a lighter design. 
The final design faithfully met its temperature performance 
obligations of 60°C, whereas the initial design was slightly 
over the limit at 64°C. Mostly, the baseplate thickness was 
reduced in exchange for a higher fan speeds, although the 
aluminum fins were also enlarged somewhat. A heavier 
penalty on the fan power would have resulted in a lowering of 
the optimal air velocity and a thickening of the baseplate. 

Challenges for the Engineer 
Automated searches for optimum designs do not replace 

an intelligent and experienced engineer. Rather, they shift his 
or her responsibilities. Enabling a problem to be attacked at a 
higher level than “how hot does this get?” empowers 
engineers, but does not absolve them of responsibility for the 
model nor for the resulting design. 

The most difficult part of using automated design 
synthesis technology is conceptual: posing the problem 
efficiently. Most engineers are not trained in formal 
optimization techniques and have not had access to software 
that lets them approach a problem at a higher level than point 
design simulation. Objective functions and constraints are 
often confused: there is a tendency to mathematically add 
constraints into the singular objective function … to define a 
complex figure of merit or composite objective with multiple 
goals, rather than isolating some “desires” as constraints. 
There is also some confusion created since design variables 
are inputs to the low-level evaluation procedure but outputs 
from the top-level optimization run. As more and more 



organizations emphasize design automation and are able to 
exploit software containing these techniques, and if 
optimization is taught more at the university level, these 
problems will eventually disappear. 

Another problem is that the underlying thermal/fluid 
model must be built to be run repeatedly while exploring a 
wide range of possible designs. Furthermore, the model must 
be accurate enough to avoid confusing the NLP solver with 
false trends or conflicting information generated from 
“computation noise.” In otherwords, additional emphasis is 
placed on generating a model that is robust, fast, and accurate 
… considerations that are often at odds with each other. 
Alternatives to CFD codes may be required (Ref 16) to enable 
such automated design explorations. 

Finally, the engineer must verify the solution. Multiple 
solutions are not common because most realistic problems 
never reach a true optimum. Instead, they are heavily 
constrained. Nonetheless, the engineer must make sure that 
the resulting design is sensical and that no other additional 
constraints need be applied in hindsight. Unfortunately, NLP 
solvers are prone to stopping prematurely because “lack of 
progress” is mathematically equivalent to “this is as good as it 
gets:” both signal problem completion. NLP engines also are 
sensitive to scaling problems: why bother discerning the 
difference between 1.0cm and 1.1cm when the initial value of 
the design variable was 100cm? The easiest way to verify 
solutions is to rerun the problem using different (but 
reasonable!) initial values of the design variables, and see if 
either the same design resulted or if an equally good or better 
design is found. 

 

Table 1: Summary of Initial (Manual) and Final (Automatically Synthesized) Designs 
 

Fin 
Thickness

(mm)

Baseplate
Thickness 

(mm)
Air Speed

(m/s)

Component
Temperature

(C)
"Mass" 
(gm)

Initial 25 3 2 64 264
Final 33.4 1.42 3.69 60 241

 
 

Figure 4: Automatically Optimized Heat Sink (Cover Removed)

  



Challenges for Analysis Software 
How does a thermal design engineer exploit the 

availability of these advanced techniques using their favorite 
thermal/fluid analyzer? Optimization techniques involve a 
higher level of analysis beyond a traditional “point design 
simulation.” Most engineering analysis software is set up to 
solve a deterministic set of equations, either steady-state or 
transient, given a fixed set of inputs. In other words, these 
programs provide predictions of how a single point design 
performs under specific environments. Automated model 
calibration, on the other hand, requires either using or 
creating a software tool that can perform multiple iterative 
point design evaluations. This section describes three 
approaches toward achieving such a capability. 

The first option uses an in-house development approach. 
To start with, engineers can write their own optimization 
engine or purchase one commercially. Next, a means of 
executing the thermal/fluid analyzer iteratively must be 
achieved, perhaps via an API (application programmer 
interface) if available, or perhaps simply by modifying and 
rewriting text input files and reading text output files. A script 
can be generated to iteratively run the thermal/fluid analyzer, 
driving the design variables with the optimization engine such 
that a optimal design is achieved. This option is cost effective 
only if software development labor is inexpensive or if an 
organization is large enough to recoup the investment of the 
development of a general-purpose utility. Otherwise, 
considerable effort will be spent rewriting the software every 
time a new optimization task arises. 

As the second option, engineers can acquire a general 
purpose MDO (multidisciplinary optimization) environment. 
Examples of such software include Engineous’ iSIGHT®, 
Phoenix Integration’s ModelCenter®, MSC Software’s 
RDCS, Synapse’ Pointer®, VR&D’s VisualDOC®, LMS’ 
Optimus®, and Samtech’s BossQuattro. To varying degrees, 
these programs enable the engineer to set up their favorite 
thermal/fluid simulation code as part of the evaluation of a 
candidate design. The advantages are that the thermal/fluid 
simulation codes need not “know” that they are being used in 
such an iterative fashion: little to no modifications of the 
simulation codes and models are required. A very significant 
benefit of this MDO approach is that it allows integration of 
diverse programs and models to include cost/risk assessments 
as well as other specialties such as structures and power 
management. Also, this approach also has the advantage of 
providing an infrastructure that reduces the time to create a 
new optimization task. However, disadvantages of the MDO 
approach include the often considerable cost of acquiring and 
learning such codes (both are on par with CFD codes), and 
the relatively slow speeds resulting from inefficiencies in 
running the simulation code in such a disconnected fashion. 
Nonetheless, such an approach is clearly better than the 
current “manual” methods of evaluating design alternatives.  

A third choice is to use a thermal/fluid analyzer that 
already has these advanced features built-in (Ref 4). This 
avoids the overhead associated with the first choice, and the 
additional costs associated with the second choice, and is 
much faster to execute than either of those choices for various 

reasons.2 However, choices are limited for two reasons. First 
and most important, few thermal/fluid analysts are aware of 
such capabilities, and hence they more typically demand 
additional detailed phenomenological modeling power rather 
than more help with design and calibration tasks. Forgivably, 
commercial vendors listen to them, and the demand for high-
level decision support tools is therefore slack. Second, even 
after analysts discover these gains in productivity and begin to 
demand them, software suppliers will find it difficult to 
accommodate these requests without significant changes in 
their software. To accommodate high-level analyses such as 
design optimization and reliability estimation, the software 
must first become fully parametric instead of expecting 
single-valued (“hard-wired”) design and environment 
specifications. There is hope, however: structural analysis and 
CAD software have increasingly emphasized such capabilities 
in their new releases over the last five years. It is hoped that 
thermal/fluid analysis tools can follow these examples and 
catch up once the user community has been educated and the 
demand for new capabilities is established. 

On-Going Developments: Integer/Discrete Variables 
Most NLP solvers are based on gradient ascent/descent 

methods that struggle with discontinuities. One important 
class of discontinuity is the “selection problem:” one or more 
design variables whose values are either integers or can only 
assume discrete values. Examples include sheet metal sizes, 
pipe sizes, and fans. In other words, most off-the-shelf 
products may only be purchased in specific (discrete) sizes. In 
the above heat sink example, the number of fins is an integer.3 

The current method for overcoming such difficulties is to 
use a real (continuous) variable, then to round the answer up 
or down to the nearest available size. If there are multiple 
integer/discrete variables, then the optimization should ideally 
be rerun after fixing each variable in succession: the so-called 
“branch and bound” strategy. 

Eventually, however, improved algorithms must be 
developed. Current candidates include Synthetic Annealing 
(SA) and Genetic Algorithms (GA). GA, for example, 
requires integer/discrete variables: real variables are actually 
approximated by using fine resolutions of discrete variables. 
Unfortunately, these methods currently require an excessive 
number of design evaluations and so are not realistically 
useful for many engineering problems. Fortunately, such 
algorithms represent an active area of research, so the current 
situation is expected to improve in the next decade. In the 
meantime, rounding up or down is usually adequate for most 

                                                 
2

 In addition to avoiding interprocess communication and overhead 
associated with starting and restarting programs, a built-in capability can 
exploit the advantage that previous steady state solutions (which usually 
comprise the majority of calibration and reliability assessment tasks) in the 
search were close to the current solution, and can jump quickly to incremental 
answers. 

 
3 In that example, however, there are ways in Thermal Desktop to vary 

the fin spacing as a real (continuous) variable without varying the actual 
number of fins: extra fins may be generated such that all fins expand or 
contract in accordion fashion. Any fins that extend past the width of the 
baseplate lose their connection to it, and are therefore of no thermal 
importance. 



problems, and certainly represents an improvement over 
manually iterated designs. 

Conclusions 
This paper has shown how the existing analytical 

emphasis on point design evaluation (e.g., “Here’s a model of 
a component. How hot does it get under these 
circumstances?”) is based on what existing thermal/fluid 
software can do, instead of what it should do: help automate 
higher-level engineering tasks such as design synthesis. 
Existing software can be automatically rerun using NLP 
technology tasked with seeking an improved design. In 
software designed to include these capabilities as “native,” 
application of automated design optimization is becoming 
more and more common as engineers gain experience. 

The resulting techniques still require a good model and an 
experienced engineer who is making sound decisions. 
However, a significant improvement in productivity has been 
demonstrated using these technologies in actual commercial 
applications. These methods are therefore expected to be 
increasingly common over the next decade. 
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