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Goddard Space Flight Center (GSFC) has been developing a framework of additional 

analysis capabilities to aid in the verification, development, and execution of thermal models 

using the OpenTD Application Programming Interface (API). This paper provides a brief 

overview of the data structures, properties, methods, and relationships between the objects 

accessible through the current API and describes some of the algorithms necessary to 

implement the desired functions at GSFC. Some example code snippets are also provided to 

aid potential users in the development of their own utilities. Following the overview are 

descriptions and algorithm methodologies of the new capabilities added to the GSFC 

framework, including: a new PI heater/controller approach for improved steady state 

predictions, selective copying of symbol over-rides from one source CaseSet to destination 

CaseSet(s), comparison of submodel object counts between a source and destination model to 

verify model integration, comparison of thermo-optical and thermo-physical properties 

between models, and improved display of extracted thermo-optical and thermo-physical 

properties for documentation.  

Nomenclature 

API = Application Programming Interface NASA = National Aeronautics and Space Administration 

GMM = Geometric Math Model  SINDA = Systems Integrated Numerical Difference Analyzer 

GSFC = Goddard Space Flight Center PID = Proportional-Integral-Derivative 

GUI = Graphical User Interface TMM = Thermal Math Model 

MLI = Multi Layer Insulation 

I. Introduction 

hermal Desktop® is an analysis tool commonly used by NASA-GSFC for the thermal modeling of spacecraft 

and instruments. It utilizes the AutoCAD program as the front-end Graphical User Interface (GUI) to allow 

analysts to construct geometric math models (GMM, which are used to compute radiative exchange factors and 

radiative heatloads from celestial sources) as well as generating a network thermal math model (TMM, which is 

solved to predict temperatures). Thermal Desktop has recently added an Application Programming Interface (API) 

beginning with version 6.0 and has extended the capabilities of the API with subsequent releases. Since the inclusion 

of the API, GSFC has utilized the capabilities offered to develop its own framework of thermal analysis utilities1,2 to 

interface with model data and to automate repetitive tasks. 

With the latest OpenTDv62 API, users now have full access to model data for all surface types, including finite 

elements, which were not available in previous versions. Leveraging these new additions, GSFC has developed 

additional utilities and capabilities to add to its existing framework. These new features include: a Proportional-

Integral (PI) controller algorithm for steady state SINDA solutions and utilities to aid in the integration and checkout 

of integrated models. Capabilities of this new code consist of: the ability to compare the submodel level object 

counts/types across two models, copying selected symbols from a source CaseSet to destination CaseSets, improved 

comparison of predictions between model outputs, and improved reporting of thermo-optical and thermophysical 

properties for model documentation. This paper outlines some of the basic usage of the API and how the data can be 

accessed and describes the GSFC developed utilities and methodologies used to develop them in further detail. It 

concludes with an updated compilation of the capabilities of the framework and the current GSFC GUI to access the 

utilities. 

 
1 Staff Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771. 
2 Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771. 
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II. Basic API Usage Overview 

In order to describe the methodologies employed to develop the utilities listed in the introduction, a brief 

overview of the methods and data structures utilized by the API is provided. While code snippets could be provided, 

they are deemed beyond the scope of this paper. The intent of this section is to provide just enough information for 

an interested user to get started. The API itself is accessed by including a reference to the OpenTDv62.dll in a user’s 

.NET compatible project. To establish a connection with Thermal Desktop, a variable of ThermalDesktop type is 

created (e.g. Dim TD as New OpenTDv62.ThermalDesktop). Once created, the drawing file to be accessed is 

specified by setting the TD.ConnectConfig.DwgPathname property. Following this with a call to the 

TD.Connect() method establishes a link with either an existing AutoCAD application that is already open with the 

specified drawing file or creates a new instance in which the specified drawing file is subsequently opened. At this 

point, all of the exposed data is now available for further investigation or manipulation. In general, two types of 

tasks could be developed: those that alter the execution flow and those that query and/or manipulate data. 

Most object types can be retrieved as a List(Of ObjectType) by calling the appropriate method [e.g. 

TD.GetRectangles()]. Alternately, a single object may also be retrieved knowing its handle, which is the unique 

identifier for each object in the AutoCAD database and is generally stored as a 6-character hexadecimal values [e.g. 

TD.GetNode(myHandle)]. Each object type includes .AttachedZZZHandles lists, where ZZZ varies by object 

type (e.g. Conics, Node, HeatLoad, Object, etc) which provides the linking hierarchy between objects (e.g. a 

Contactor that references a Surface, a HeatLoad assigned to a Node). For example, a node object type includes the 

.AttachedConicsHandles method, which retrieves a list of all the handles for surfaces related to that node, and 

the .AttachedObjectHandles method, which retrieves a list of handles for all the objects (e.g. HeatLoads, Finite 

Elements, Conductors, etc.) related to it. Using the .GetEntityTypes method allows each of these handles to be 

dereferenced to their object type and the specific instance of each object retrieved for further evaluation. 

Understanding the relationships between objects through their related handles was crucial to the development of the 

object count utility as well as any future development across dissimilar object types. 

While the function names listed above are specific to the OpenTDv62.dll, the software vendor has made efforts 

to not “break” the functions with each subsequent release of OpenTD. In fact, future releases would be in their own 

file, preventing conflicts if the original library continues to be used with the developed code. Only when a new 

library is introduced, perhaps to take advantage of newer features, does the risk of conflicts arise. In fact, during the 

development of these tools, upgrading from v6.1 to v6.2 did break some functions that changed between the two 

libraries, but the updates to fix the code were very minor. That said, it is in the software vendor’s own interest to 

minimize any disruptions to the existing functions in the library to keep end users satisfied and wanting to continue 

to use the capability while also reducing the amount of support they would need to provide. 

Some of the functions developed by GSFC do not directly interact with the objects in the model, but rather alter 

the model execution portion of the analysis process to inject code for specific purposes. In this case, the API is used 

modify a case set, execute it as needed, and process the files generated in response to add custom code to perform 

additional tasks during model execution. This was first used by GSFC to automate the inclusion of Heater, Heat 

Load, and PID Controller logic between the generation of the CondCap file and the execution of the input file2. This 

approach was also improved to implement the Radk Filtering options developed previously3. Most recently, this 

capability has been expanded to add custom logic for the emulation of PID controllers in steady state solutions to 

achieve the setpoint, which is described in the following section. 

III. Steady State PID Emulation 

PID controlled heaters are difficult to model in steady state solutions as there is no time value on which the 

integrator term can operate to achieve the setpoint. Therefore, the proportional term is the only term that can provide 

meaningful contributions to the control variable. Some PID algorithms might try to utilize the iteration count as a 

pseudo-time substitute, but this becomes difficult with simultaneous solutions which advance the entire solution 

each iteration and no mass to dampen the changes between iterations. For this new approach, a predictor-corrector 

method was employed to get close to the stable solution before an averaging window is used to generate the final 

predictor value. The corrector term is then employed based on the setpoint/sense point relationship to gradually 

increase or decrease the control variable. Each time the setpoint is crossed, the adjustment value is decreased until it 

reaches a minimal threshold, after which it is set to zero and the duty cycle remains fixed for the remainder of the 

solution. 

The SINDA input deck is first processed to identify all calls to PID controllers and the setpoint, sense point, and 

control variable registers are identified. Further processing is performed in two additional passes through the input 

file to identify registers that may reference the control variable but are themselves assigned to the nodal heat 
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application logic (e.g. PID_1_HeaterPwr = PID_1_DutyCycle * PID_1_AvailablePower). A final pass is made 

through the file to determine all the nodes to which heat is applied for each PID controller. With the knowledge of 

the control variable, sensing point, setpoint, and related nodes for each controller, the logic is then be written to the 

file to be included in the solution. 

The complete algorithm (shown in Figure 1) is executed in SINDA and is broken into multiple sequential phases: 

ASSUME CONTROL, APPROACH, AVERAGE, APPLY, ADJUST, ACQUIESCE, and ASSIGN. The ASSUME 

CONTROL phase begins by storing all the current convergence criteria and recasting the convergence criteria to 

zero to prevent solution convergence prior to setpoint achievement. This portion also initializes arrays which store 

the relative node locations in SINDA and initializes the average value of the control variable to zero. The 

APPROACH phase utilizes the same logic as a steady state damped, proportional heater generated by Thermal 

Desktop, with the On/Off range defined as (setpoint) to (setpoint – 4). This phase is used to determine a duty cycle 

that is generally close to achieving the desired setpoint through the first X iterations but may result in oscillations 

about the setpoint. The next phase is the AVERAGE phase which computes the sum of the heat applied for each 

individual node in the model over the next Y iterations as well as the sum of each control variable. Dividing these 

sums by Y, results in the average power or average control variable value as the solution moves into the next phase. 

The APPLY phase assigns the average nodal heat load to each node and the average control variable for the next Z 

iterations in order to provide stable and constant values to the solution for better likelihood of convergence without 

the perturbations of PID controllers or other heaters or varying heat in a steady state solution.  

The next ADJUST phase is the most crucial, as this is the phase where adjustments are made to the heat applied 

based on the relationship between the setpoint and the sense point. If the sense point is above the setpoint, then the 

duty cycle is reduced by a fixed delta beginning with a 4% change (e.g. a duty cycle of 0.33 changes to 0.29 if the 

sense point is warmer than the setpoint). The opposite is true if the sense point is below the setpoint and the duty 

cycle is increased. Constraints are applied to ensure than the duty cycle never exceeds 100% or falls below 0%. 

Earlier versions of this algorithm only adjusted the PID control variable, but other non-PID heaters in the model 

generally perturbed the solution enough to prevent convergence. Furthermore, previous analysis efforts constrained 

the nodal heat values to constant (averaged values) for the last part of the run to improve the likelihood of 

convergence, but without the corrector term, the controllers were unlikely to achieve their setpoints. The final 

algorithm combines the benefits of both approaches. The relationship between each PID controller and the nodes to 

 
Figure 1. Steady State PID Heater Emulation Flowchart: The algorithm behavior varies with iteration. It first 

ASSUMES control to prevent premature convergence by SINDA. Next, it APPROACHes the required heater power 

using a damped, proportional approach. After some iterations, it begins the process of AVERAGE-ing these values, 

which are the APPLY-ed as a constant averaged value over the next iterations. After applying the average, it 

ADJUSTs the heater power to more closely match the setpoint, reducing the adjustment amount every time the 

sensing point crosses the setpoint. Lastly, it ACQUIESCEs and return convergence control back to SINDA after a 

specified number of iterations or when enough adjustments have reached zero. 
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which heat is applied must be established in order for this approach to function properly. The heat values at a nodal 

level are adjusted every N iterations and the data is tracked to see when the sensing point crosses the setpoint. At 

this crossing event, the amount of the adjustment is reduced by half (e.g. 4% to 2%, 2% to 1%, etc.) and the process 

continues. The effect is a damping of the overshoot or undershoot about the setpoint until 0.25% is reached, at which 

point the adjustment is set to zero and the prediction deemed adequate. Throughout the ADJUST phase, the 

percentage of circuits that have had their adjustment reduced to zero is tracked, and once 80% of the controllers are 

no longer adjusting, the last ACQUIESCE phase is executed. During this phase, the convergence criteria is set back 

to the original values, and the solution continues towards convergence with the few remaining controllers still 

adjusting if needed. Upon convergence, the final ASSIGN phase is executed which calls the PIDINIT function in 

SINDA with the current 

setpoint, sense point, and 

control variable, which 

initializes the accumulated 

error term for the start of a 

subsequent transient solution. 

During the development of 

this technique, other options 

were explored and found to not 

perform as well as the final 

algorithm. This includes only 

applying this methodology to 

the control variable, which did 

not allow for the nodal heat 

averaging over all nodes and 

often did not converge. 

Additionally, the adjustment 

was originally envisioned as a 

multiplier, but this had a near 

negligible effect for very low 

duty cycles (e.g. a 1.04/0.96 

multiplier on a 4% duty cycle 

would take many adjustments 

before any meaningful 

response could be seen. 

The overall goal was a 

reduction in the run time for 

the Roman Space Telescope 

observatory model to achieve 

quasi-steady stability. While 

the number of iterations needed 

to reach steady state increased, 

the ability to start the transient 

from a closer condition resulted 

in less solution time needed to 

reach quasi-stability and an 

overall reduction in run time. 

Figure 2 shows the PID 

emulation for one of the 

controllers where each phase 

can be clearly seen. Figure 3 

shows a comparison of the 

transient model performance 

for a select controller and 

resulted in a 33% reduction in 

overall run time. 
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Figure 2. Performance of PID Heater Emulation during Steady State 

Solution: APPROACH: 0-40, AVERAGE: 41-70, APPLY: 71-90, ADJUST: 91-

210. As the entire solution progresses, full model convergence is achieved around 

iteration 300 and the sensing point is very close to the setpoint of 232 K 
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Figure 3. Performance of PID Heater with and without Steady State 

Emulation: The red curve represents the previous method using a damped 

proportional approach for steady state. The blue initialized the PID accumulated 

error using the damped proportional values estimated in steady state. Lastly, the 

green used the Predictor/Corrector approach and initialized the accumulated 

error using the predicted steady state values and was run for half the transient 

time reaching quasi-stability considerably sooner. By the end of each run, the 

results are similar, although the new approach reaches that point much sooner. 
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IV. Object Counts 

A fairly common model check when integrating a source model into a destination model in Thermal Desktop is 

to compare the object counts between the two models, usually done at a submodel level. Any discrepancies may 

indicate differences that should be resolved before concluding the integration was successful. However, for model 

deliveries with many submodels, the practicality of comparing possibly more than 50 submodels becomes tedious at 

best. Therefore, the API was utilized to programmatically retrieve this information for each submodel from two 

models and output the results into a spreadsheet for much easier direct comparison. 

The routine begins with evaluating all Domain Tag Sets and storing the information for later use. To optimize 

the data retrieval, lists of Submodels, Nodes, Conductors, Contactors, HeatLoads, and Heaters for the entire model 

are retrieved and stored in internal variables. Each submodel is processed and the subset of nodes in that submodel 

are retrieved using the .Where method of the List(of Node). The type of the node (RC/TD, Diffusion, 

Arithmetic, etc) is readily identifiable through direct properties of a node. Surfaces and elements require iterating 

that the node’s .AttachedConicsHandles and .AttachedObjectHandles lists.  

As these lists are processed for their respective entity types, handles for Surfaces, Solids, Planar Finite Elements, 

and Solid Finite Elements are identified and stored separately. Upon processing all the nodes in a submodel, these 

four lists of handles are sorted and compressed to remove duplicate handles. The lists of Surfaces, Solids, and Finite 

Elements are then processed to identify any assigned MLI nodes, which are not included as unique objects in the 

List(of Node) previously retrieved. As each object type is identified, the object itself is retrieved, and then the 

properties defining the application of insulation are queried to identify MLI node numbers and store them in a 

master insulation node list. This master list is then used to report the number of INS nodes for each submodel. 

Lastly, all Conductors, Contactors, HeatLoads, and Heaters are processed. For Conductors, the .From 

connection list is a single node and this handle can be compared to all node handles in the submodel subset list to 

determine if it matches, and therefore is related to the submodel being processed. The .To list for a Conductor may 

contain either nodes or surfaces. Determination of related nodes is the same as for the .To list approach, but for 

surface types, the comparison is made to the list of surfaces and planar finite elements determined from  

.AttachedConicsHandles and .AttachedObjectHandles methods earlier. In the event that a Domain Tag Set is 

specified, it is replaced with the handles to the objects contained in the Domain Tag Set definition processed earlier 

in the sequence. If a reference to the currently processed submodel is identified, then the current Conductor is 

identified as related to the current submodel and the Conductor count is incremented. Each Conductor is processed 

similarly, and the resulting count of all related entities is stored. A similar process is followed for HeatLoads, 

Heaters (which also includes the .ApplyConnections and .SensorConnections) and Contactors (which includes 

the .From and .To connections).Once all the data is processed, the results are compiled into a 2D matrix comprised 

of submodels and object counts for: Total Nodes, Thermal Desktop/RadCAD nodes, Diffusion Nodes, Arithmetic 

Nodes, Boundary Nodes, Clone Nodes, Insulation Nodes, Planar Finite Elements, Surfaces, Solids, Solid Finite 

Elements, Conductors, HeatLoads, Heaters, Contactors, and Measures. This matrix is then readily output as a 

Comma-Separated Values file for subsequent import into a spreadsheet, as shown below in Figure 4. 

 
Figure 4. Sample of Object Count Output: The number of each object type associated with a given submodels is 

listed for further evaluation or comparison between two or more models 
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V. Copy Symbols between CaseSets 

One of the more powerful features of 

Thermal Desktop is the ubiquitous use of 

symbols to control and configure a model. 

However, this can also lead to instances 

where the incorrect setting of a symbol can 

lead to model errors. Furthermore, 

incorporating numerous symbol overrides 

from a given CaseSet in a delivered model 

into a CaseSet in a destination model can be 

very time consuming and error prone. 

Needing to include these symbols in 

multiple destination CaseSets only 

compounds this challenge, although the 

ability to edit multiple case sets does 

alleviate this a bit. But when needing to 

integrate multiple subsystem models, each 

with their own sets of symbols and values, 

for multiple configuration cases (e.g. hot, 

cold, survival, stowed, etc), this can quickly 

be a time-consuming process to establish 

the correct full set of symbols in the 

destination model. 

Using the API, an interface was 

developed which allows for the selection of 

a single CaseSet from the source model and 

then displays all the symbol overrides, 

along with their override values. A listing of all the 

CaseSets from a destination model is also provided, and 

as a user selects destination CaseSets, the values for 

each symbol override in those CaseSets are displayed 

alongside the source case set symbols. If the destination 

symbol’s values are not identical across all selected 

CaseSets, then the value displayed is “Varies”. Use of 

this interface has reduced the time necessary to 

construct the CaseSet definition in the destination file 

considerably by displaying the source values and 

allowing for a simple button click to transfer the 

symbol definitions to the destination CaseSets. 

Another companion capability to copying symbols 

between CaseSets was also developed that allows for 

comparison of symbols between multiple case sets. 

However, this feature goes deeper than a direct symbol 

override comparison, evaluating symbols based on 

based on the direct override, as well as symbols that are 

dependent on the overridden symbol1. Figure 5 shows 

the graphical interface for copying symbols from one 

CaseSet to another, while Figure 6 shows the results of 

a comparison of symbols between multiple case sets. 

 

 
   

Figure 6. Symbol Comparison Output: The comparison 

of the three selected Destination CaseSets highlights the 

differences in symbol values, including the dependencies 

of the direct overrides. 

 

   
Figure 5. Graphical User Interface for Symbol Copy between 

CaseSets: The GUI displays the symbol overrides values of the 

selected source as well as the corresponding values from the selected 

Destination CaseSets 
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VI. Model Prediction Comparison 

Beyond the comparison of object counts and symbols between models, a methodology was also sought to easily 

compare predictions between models. Previous efforts1 included the capability to output Heater, Heat Load, and PID 

controller information at each timestep. This approach reads through the CondCap file generated by 

ThermalDesktop prior to the execution of SINDA. During this read, it identifies SINDA code associated with the 

application of HeatLoads, Heaters, and PID controllers and extracts the defining parameters (e.g. ,setpoint, heat 

dissipations, control variable, etc). These values and variables associated with them are then processed to generate 

specialized logic to be included during the model execution in SINDA, which in turn produces relevant data in the 

output file related to the HeatLoads, Heaters and PID controllers at every timestep during the solution. After model 

execution, the output file is then processed to extract the data and imports it into a template Microsoft Excel® 

workbook for further processing, shown in Figure 7. 

  A new comparison utility was recently added to identify significant differences between two model outputs 

based on the data on the Summary tab, shown in Figure 8. Two files are supplied to the routine and it evaluates the 

data, identifying temperature deviations of more than 2 K and any differences in power (Dissipation, Heater, or 

Control Variable). Power differences of more than 5% are identified by bold, red text; power differences between 2-

5% are identified by bold orange text. All differences of consequence are captured as a comment to the worksheet 

cell, which includes: the base value, compare value, difference, and percent difference (if a power value). Figure 7 

shows the Summary_Compare sheet with the comments identifying significant differences. At this time, the 

comparison is keyed off the name of the HeatLoad, Heater, or PID Controller. Therefore, comparisons are limited 

based on those names and to the same software, but the general intent is to be able to verify that the performance of 

a subsystem model is consistent when integrated to the next higher level of assembly, and the renaming of these 

object types should not be expected. Furthermore, these is no effective way to graphically display these values (e.g. 

contour plot on a 3D model) as many of the values represent a subset of all nodal values, but do represent critical 

locations where heat is applied or temperatures are directly impacted by the application of heat. In this sense, 

tabulation of the data and the differences is judged the best means to display this data.  

  
 

HeatLoad:  
 

Heater:  
 

PID:  

Figure 7. Heater, HeatLoad, PID Controller Summary Sheet: The Summary sheet shows the critical temperature 

and power data for all HeatLoads, Heaters, and PID Controllers found in a model (Headers enlarged) 

 
Figure 8. Heater, HeatLoad, PID Controller Summary_Compare Sheet: The Summary_Compare sheet 

highlights differences between two files as comments for each cell (including the two values, difference, and percent 

difference for power values) with a comment in A1 listing the compare filename for reference 
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VII. Property Documentation 

Thermal Desktop stores optical and material property data in text files and displays the property values in the 

main GUI. However, the data itself is not easily extracted from these text files without a better understanding of the 

format nor is it easily exported to other programs from within Thermal Desktop. That said, the API does offer 

functions for retrieving the data programmatically for further manipulation. Basic functions had been written 

previously to extract this data, but while the output format was functional, it was not particularly user friendly. A 

new function was developed to improve the data format for presentations or inclusion in documentation. 

After extracting the properties through the API, a spreadsheet is generated to display the material properties line 

by line. Pertinent information regarding material name, isotropy, effective emissivity, density, specific heat, thermal 

conductivity in XYZ directions, and comments are listed in individual columns. If the specific heat or any thermal 

conductivity are temperature dependent, a new sheet is created with the material name and includes the tabulated 

values and corresponding plots to visualize the dependence. Hyperlinks are generated to provide greater ease in 

shifting between the material list and temperature dependent data. Regarding thermo-optical properties, a similar 

documentation process is done with Beginning-of-Life and End-of-Life as defining categories. Figure 9 shows the 

thermo-physical property table, while Figure 10 shows an example of a fully populated temperature dependent 

material sheet.  

 
Figure 9. Thermo-physical Property Sheet: The excel sheet displays the thermophysical list for further evaluation 

or comparison between materials. Hyperlinks are highlighted to indicate temperature dependent data is available. 
 

 
Figure 10. Temperature Dependent Material Sheet: The excel sheet displays the temperature dependent 

properties and associated tabulated values. A back button allows quick return to the table of all properties. 
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A material comparison sheet is also provided to compare properties. 10 drop down menus are included, each 

containing all available materials. Selecting a particular material populates the specific heat and thermal 

conductivity data table and updates the data displayed in the plots. If the property value is constant, the data is 

shown as a constant value ranging from a default of 0 to 400. Figure 11 depicts the worksheet after specifying 10 

different materials. 

VIII. Framework and Interface 

The various capabilities described in this paper were added to the framework1 developed at the Goddard Space 

Flight Center. Table 1 lists the new functions added, and a complete list of functions in the framework may be found 

in the appendix. The goal was to minimize, as much as possible, the need for a graphical interface to access the 

capabilities of the framework, allowing users to develop their own interface to the framework capabilities. Entries in 

italics utilize the OpenTD API, while the others are utility functions that do not require a connection to the API.  
 

Framework Function Purpose 

GenerateDampedPropHeatersInSSForPIDs 

Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector 

approach for all PID controllers 

GenerateHtrDisSummaryCompare 

Generate Compare_Summary sheet highlighting the differences between two 

HtrDis postprocessing files 

WritePropsToXL 

Extract Material and Optical property data and generate Tables in Excel 

workbook along with temperature dependent material property plots 

GetTDGlobalVisibilityStates 

Return data structure with deterministic global visibility state for each 

Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc) 

TurnNodeIDsOnForSelectedNodes Evaluate user provided node list and turn node number visibility on in GUI 

GetTDObjectCounts Retrieve counts for each TD object type for each submodel 

GetTDReferencedProperties Retrieve list of Material and Optical properties used by each submodel 

GetTDObjectCountsAndReferencedProperties 

Retrieve counts for each TD object type and lists of Material and Optical 

properties for each submodel 

GetAllReferencedRCOFiles Make list of all Optical files that were referenced throughout all CaseSets 

GetAllReferencedTDPFiles Make list of all Material files that were referenced throughout all CaseSets 

Table 1 – List of new Functions added to GSFC Developed Framework 
 

The GUI developed at GSFC was updated to provide a means of access to these functions without the need for a 

user to write their own code to access the functionality. This GUI is currently split across two separate tabs; one is 

useful for manipulating and processing files and executing CaseSets. The other is geared toward utilities for model 

integration/comparison. This GUI is depicted in Figure 12. 

 
Figure 11. Material Comparison Sheet: The excel sheet display graphs of specific heat and thermal conductivity in 

the x-direction for up to 10 materials. Each material has its respective values beneath the graphs. 
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IX. Conclusions and Path Forward 

The continued addition of capabilities to the OpenTD API has allowed users greater access to the internal data in 

Thermal Desktop models. The Goddard Space Flight Center continues to explore the exposed data, seeking new 

methods to optimize our thermal analysis process and expand our capabilities. The ability to inject these features 

into the model execution process has helped streamline the process and minimizes the amount of user intervention 

required to take advantage of the developed features. 

The most recent efforts have focused primarily on improving the model integration and verification part of the 

process. These added abilities allow a quick check that the same number of objects are present in both the source 

and integrated models for each submodel and to import symbols from delivered case sets into their counterparts in 

the integrated model. Further development of the “Compare” capability of the Heat Load, Heater, and PID 

Controller summary sheets also allows for the verification of consistent predictions between delivered and integrated 

models. To provide better documentation of the optical and material properties, the output from the previous code 

was improved to more easily visualize the data extracted from the models. Lastly, the development of a new heater 

routine for better predictive capabilities of PID controlled heaters is already beginning to pay dividends for the 

Roman Space Telescope project, with a considerable reduction in the necessary run time to achieve quasi-steady 

predictions for many of its mission modes. Furthermore, the ability to utilize steady state solution predictions, 

bypassing the need for longer transient runs, is also being investigated and shows promise at this time. While this 

code was developed specifically for SINDA, the algorithm is fairly easily convertible to other codes that utilize a 

similar solution structure as SINDA with convergence and VARIABLES user logic blocks. 

The process is currently underway to allow the release of these capabilities to the wider community, both the 

executable and the source code, with the hope that other organizations will add to these capabilities and also share 

their developments with the community. At this time, there are no plans to output to other formats, but once the 

source code is released, any users wishing to expand the output options to other formats (e.g. web-based pages) are 

free to utilize the framework provided to assist in that effort. As new capabilities are added to the OpenTD API, 

GSFC will continue to explore the exposed data seeking even more improvements to its analysis processes and work 

to share them with the thermal community. 

Acknowledgments 

The primary author would like to thank the Roman Space Telescope project for continuing to support the 

exploration of the API to improve our processes and reduce the model run time. 

References 
1 Peabody, H., “Extending the Capabilities of Thermal Desktop with the OpenTD Application Programming Interface” ICES-

2020-297, 50th International Conference on Environmental Systems, 2020 
 
2 Peabody, H., “Tracking Critical Thermal Metrics throughout the Life Cycle of a Large Observatory Thermal Model” ICES-

2020-298, 50th International Conference on Environmental Systems, 2020 

   
Figure 12. Simplistic Graphical User Interface to access framework functions: A simplistic interface was 

developed to more easily specify files and parameters to access the framework capabilities 

 



 

International Conference on Environmental Systems 
 

 

11 

 
3 Peabody, H., Yee, E., “Run Time Improvement Efforts for the Roman Space Telescope Thermal Analysis” ICES-2021-253, 51st 

International Conference on Environmental Systems, 2021 

Appendix 

The table below lists the current functions in the framework. Those with a preceding * are newly added. Those in 

italics interface directly with Thermal Desktop through the OpenTD API, while the others interface with files that 

may or may not have been generated using Thermal Desktop and does not require the API. 
 
Framework Function Purpose 

GenerateHeaterDissipationLogic 

Process SINDA .inp file and add logic to .htr file to output Heater and 

Dissipation output logic for every timestep 

ProcessHeaterDissipationResults 

Process SINDA .out file and retrieve output generated from 

GenerateHeaterDissipationLogic and import into Excel template workbook 

*GenerateDampedPropHeatersInSSForPIDs 

Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector 

approach for all PID controllers 

*GenerateHtrDisSummaryCompare 

Generate Compare_Summary sheet highlighting the differences between two 

HtrDis postprocessing files 

Write2DArrayToCSVFile 

Convert 2D array to comma-separated value output file (can include Header 

row and Output Mask) 

ImportFileIntoExcel Import specified text file into specified Excel location, parsing on delimiter 

ExtractTaggedLinesAndImportIntoExcel 

Extract lines beginning with TagID from OutFile and import into specified 

Excel location, parsing on specified delimiter 

*GetTDGlobalVisibilityStates 

Return data structure with deterministic global visibility state for each 

Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc) 

*TurnNodeIDsOnForSelectedNodes Evaluate user provided node list and turn node number visibility on in GUI 

*GetTDObjectCounts Retrieve counts for each TD object type for each submodel 

*GetTDReferencedProperties Retrieve list of Material and Optical properties used by each submodel 

*GetTDObjectCountsAndReferencedProperties 

Retrieve counts for each TD object type and lists of Material and Optical 

properties for each submodel 

*GetAllReferencedRCOFiles Make list of all Optical files that were referenced throughout all CaseSets 

*GetAllReferencedTDPFiles Make list of all Material files that were referenced throughout all CaseSets 

RemoveRadk1FromRadk2 Outputs file with all the Radks that appear only in Radk File 2 

ReplaceRadk2MinusRadk1WithBackloads 

Outputs file with inputs and logic to represent all the Radks in Radk2 but not 

in Radk1 as Backloads along with radiation to sink  

ReplaceRadk2MinusRadk1WithHeatFlowsIJ 

Outputs file with inputs and logic to represent all the Radks in Radk2 but not 

in Radk1 as a Heat Flow 

EvaluateSymbolsInDWGFile 

Generates temporary case set, outputs CC file and processes this for evaluated 

symbol values 

EvaluateSymbolsForSpecifiedCaseSet 

Generates temporary case set spawned from user specified case, outputs CC 

file and processes this for evaluated symbol values 

ExtractSymbolEvaluatedValuesFromCCFile Process CC file header and retrieves symbol names and evaluated values 

GetTDOptProps 

Read TD object and extract optical properties and store in 

GMM_OpticalProperties collection 

GetTDThermoProps 

Read TD object and extract thermophysical properties and store in 

GMM_ThermophiysicalProperties collection 

*WritePropsToXL 

Extract Material and Optical property data and generate Tables in Excel 

workbook along with temperature dependent material property plots 

GetTDNotes 

Read TD object and extract Notes data and Splice together all Tabs into single 

output text file 

GetTDRunDirectory 

Return path to either DWG file if No CaseSet specified with UserDirectory, or 

to UserDirectory 

RunSpecifiedCaseSet 

Execute case set in its own directory with options to add heater dissipation 

and convergence trace logic 

 


