Development of Improved Thermal Analysis Capabilities at the NASA Goddard Space Flight Center

Hume L. Peabody¹ and Eric Yee² NASA-GSFC, Greenbelt, MD 20771

Goddard Space Flight Center (GSFC) has been developing a framework of additional analysis capabilities to aid in the verification, development, and execution of thermal models using the OpenTD Application Programming Interface (API). This paper provides a brief overview of the data structures, properties, methods, and relationships between the objects accessible through the current API and describes some of the algorithms necessary to implement the desired functions at GSFC. Some example code snippets are also provided to aid potential users in the development of their own utilities. Following the overview are descriptions and algorithm methodologies of the new capabilities added to the GSFC framework, including: a new PI heater/controller approach for improved steady state predictions, selective copying of symbol over-rides from one source CaseSet to destination CaseSet(s), comparison of submodel object counts between a source and destination model to verify model integration, comparison of thermo-optical and thermo-physical properties between models, and improved display of extracted thermo-optical and thermo-physical properties for documentation.

Nomenclature

GUI	= Application Programming Interface = Geometric Math Model = Goddard Space Flight Center = Graphical User Interface = Multi Layer Insulation	NASA = National Aeronautics and Space Administration SINDA = Systems Integrated Numerical Difference Analyzer PID = Proportional-Integral-Derivative TMM = Thermal Math Model
MLI	= Multi Layer Insulation	

I. Introduction

Thermal Desktop® is an analysis tool commonly used by NASA-GSFC for the thermal modeling of spacecraft and instruments. It utilizes the AutoCAD program as the front-end Graphical User Interface (GUI) to allow analysts to construct geometric math models (GMM, which are used to compute radiative exchange factors and radiative heatloads from celestial sources) as well as generating a network thermal math model (TMM, which is solved to predict temperatures). Thermal Desktop has recently added an Application Programming Interface (API) beginning with version 6.0 and has extended the capabilities of the API with subsequent releases. Since the inclusion of the API, GSFC has utilized the capabilities offered to develop its own framework of thermal analysis utilities^{1,2} to interface with model data and to automate repetitive tasks.

With the latest OpenTDv62 API, users now have full access to model data for all surface types, including finite elements, which were not available in previous versions. Leveraging these new additions, GSFC has developed additional utilities and capabilities to add to its existing framework. These new features include: a Proportional-Integral (PI) controller algorithm for steady state SINDA solutions and utilities to aid in the integration and checkout of integrated models. Capabilities of this new code consist of: the ability to compare the submodel level object counts/types across two models, copying selected symbols from a source CaseSet to destination CaseSets, improved comparison of predictions between model outputs, and improved reporting of thermo-optical and thermophysical properties for model documentation. This paper outlines some of the basic usage of the API and how the data can be accessed and describes the GSFC developed utilities and methodologies used to develop them in further detail. It concludes with an updated compilation of the capabilities of the framework and the current GSFC GUI to access the utilities.

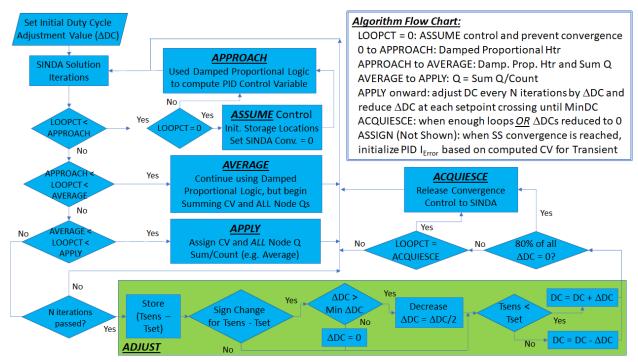
¹ Staff Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771.

² Thermal Engineer, Mail Stop 545, Goddard Space Flight Center, Greenbelt MD 20771.

II. Basic API Usage Overview

In order to describe the methodologies employed to develop the utilities listed in the introduction, a brief overview of the methods and data structures utilized by the API is provided. While code snippets could be provided, they are deemed beyond the scope of this paper. The intent of this section is to provide just enough information for an interested user to get started. The API itself is accessed by including a reference to the OpenTDv62.dll in a user's .NET compatible project. To establish a connection with Thermal Desktop, a variable of ThermalDesktop type is created (e.g. Dim TD as New OpenTDv62.ThermalDesktop). Once created, the drawing file to be accessed is specified by setting the TD.ConnectConfig.DwgPathname property. Following this with a call to the TD.Connect() method establishes a link with either an existing AutoCAD application that is already open with the specified drawing file or creates a new instance in which the specified drawing file is subsequently opened. At this point, all of the exposed data is now available for further investigation or manipulation. In general, two types of tasks could be developed: those that alter the execution flow and those that query and/or manipulate data.

Most object types can be retrieved as a List(Of ObjectType) by calling the appropriate method [e.g. TD.GetRectangles()]. Alternately, a single object may also be retrieved knowing its handle, which is the unique identifier for each object in the AutoCAD database and is generally stored as a 6-character hexadecimal values [e.g. TD.GetNode(myHandle)]. Each object type includes .AttachedZZZHandles lists, where ZZZ varies by object type (e.g. Conics, Node, HeatLoad, Object, etc) which provides the linking hierarchy between objects (e.g. a Contactor that references a Surface, a HeatLoad assigned to a Node). For example, a node object type includes the .AttachedConicsHandles method, which retrieves a list of all the handles for surfaces related to that node, and the .AttachedObjectHandles method, which retrieves a list of handles for all the objects (e.g. HeatLoads, Finite Elements, Conductors, etc.) related to it. Using the .GetEntityTypes method allows each of these handles to be dereferenced to their object type and the specific instance of each object retrieved for further evaluation. Understanding the relationships between objects through their related handles was crucial to the development of the object count utility as well as any future development across dissimilar object types.


While the function names listed above are specific to the OpenTDv62.dll, the software vendor has made efforts to not "break" the functions with each subsequent release of OpenTD. In fact, future releases would be in their own file, preventing conflicts if the original library continues to be used with the developed code. Only when a new library is introduced, perhaps to take advantage of newer features, does the risk of conflicts arise. In fact, during the development of these tools, upgrading from v6.1 to v6.2 did break some functions that changed between the two libraries, but the updates to fix the code were very minor. That said, it is in the software vendor's own interest to minimize any disruptions to the existing functions in the library to keep end users satisfied and wanting to continue to use the capability while also reducing the amount of support they would need to provide.

Some of the functions developed by GSFC do not directly interact with the objects in the model, but rather alter the model execution portion of the analysis process to inject code for specific purposes. In this case, the API is used modify a case set, execute it as needed, and process the files generated in response to add custom code to perform additional tasks during model execution. This was first used by GSFC to automate the inclusion of Heater, Heat Load, and PID Controller logic between the generation of the CondCap file and the execution of the input file². This approach was also improved to implement the Radk Filtering options developed previously³. Most recently, this capability has been expanded to add custom logic for the emulation of PID controllers in steady state solutions to achieve the setpoint, which is described in the following section.

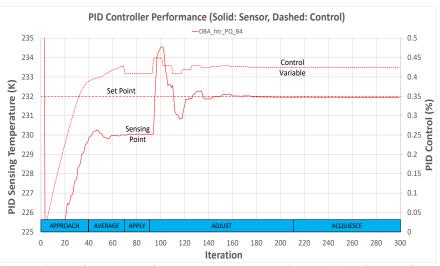
III. Steady State PID Emulation

PID controlled heaters are difficult to model in steady state solutions as there is no time value on which the integrator term can operate to achieve the setpoint. Therefore, the proportional term is the only term that can provide meaningful contributions to the control variable. Some PID algorithms might try to utilize the iteration count as a pseudo-time substitute, but this becomes difficult with simultaneous solutions which advance the entire solution each iteration and no mass to dampen the changes between iterations. For this new approach, a predictor-corrector method was employed to get close to the stable solution before an averaging window is used to generate the final predictor value. The corrector term is then employed based on the setpoint/sense point relationship to gradually increase or decrease the control variable. Each time the setpoint is crossed, the adjustment value is decreased until it reaches a minimal threshold, after which it is set to zero and the duty cycle remains fixed for the remainder of the solution.

The SINDA input deck is first processed to identify all calls to PID controllers and the setpoint, sense point, and control variable registers are identified. Further processing is performed in two additional passes through the input file to identify registers that may reference the control variable but are themselves assigned to the nodal heat

Figure 1. Steady State PID Heater Emulation Flowchart: The algorithm behavior varies with iteration. It first ASSUMES control to prevent premature convergence by SINDA. Next, it APPROACHes the required heater power using a damped, proportional approach. After some iterations, it begins the process of AVERAGE-ing these values, which are the APPLY-ed as a constant averaged value over the next iterations. After applying the average, it ADJUSTs the heater power to more closely match the setpoint, reducing the adjustment amount every time the application logic (e.g. PID_1_HeaterPwr = PID_1_DutyCycle * PID_1_AvailablePower). A final pass is made through the file to determine all the nodes to which heat is applied for each PID controller. With the knowledge of the control variable, sensing point, setpoint, and related nodes for each controller, the logic is then be written to the file to be included in the solution.

The complete algorithm (shown in Figure 1) is executed in SINDA and is broken into multiple sequential phases: ASSUME CONTROL, APPROACH, AVERAGE, APPLY, ADJUST, ACQUIESCE, and ASSIGN. The ASSUME CONTROL phase begins by storing all the current convergence criteria and recasting the convergence criteria to zero to prevent solution convergence prior to setpoint achievement. This portion also initializes arrays which store the relative node locations in SINDA and initializes the average value of the control variable to zero. The APPROACH phase utilizes the same logic as a steady state damped, proportional heater generated by Thermal Desktop, with the On/Off range defined as (setpoint) to (setpoint – 4). This phase is used to determine a duty cycle that is generally close to achieving the desired setpoint through the first X iterations but may result in oscillations about the setpoint. The next phase is the AVERAGE phase which computes the sum of the heat applied for *each individual node* in the model over the next Y iterations as well as the sum of each control variable. Dividing these sums by Y, results in the average power or average control variable value as the solution moves into the next phase. The APPLY phase assigns the average nodal heat load to each node and the average control variable for the next Z iterations in order to provide stable and constant values to the solution for better likelihood of convergence without the perturbations of PID controllers or other heaters or varying heat in a steady state solution.


The next ADJUST phase is the most crucial, as this is the phase where adjustments are made to the heat applied based on the relationship between the setpoint and the sense point. If the sense point is above the setpoint, then the duty cycle is reduced by a fixed delta beginning with a 4% change (e.g. a duty cycle of 0.33 changes to 0.29 if the sense point is warmer than the setpoint). The opposite is true if the sense point is below the setpoint and the duty cycle is increased. Constraints are applied to ensure than the duty cycle never exceeds 100% or falls below 0%. Earlier versions of this algorithm only adjusted the PID control variable, but other non-PID heaters in the model generally perturbed the solution enough to prevent convergence. Furthermore, previous analysis efforts constrained the nodal heat values to constant (averaged values) for the last part of the run to improve the likelihood of convergence, but without the corrector term, the controllers were unlikely to achieve their setpoints. The final algorithm combines the benefits of both approaches. The relationship between each PID controller and the nodes to

which heat is applied must be established in order for this approach to function properly. The heat values at a nodal level are adjusted every N iterations and the data is tracked to see when the sensing point crosses the setpoint. At this crossing event, the amount of the adjustment is reduced by half (e.g. 4% to 2%, 2% to 1%, etc.) and the process continues. The effect is a damping of the overshoot or undershoot about the setpoint until 0.25% is reached, at which point the adjustment is set to zero and the prediction deemed adequate. Throughout the ADJUST phase, the percentage of circuits that have had their adjustment reduced to zero is tracked, and once 80% of the controllers are no longer adjusting, the last ACQUIESCE phase is executed. During this phase, the convergence criteria is set back to the original values, and the solution continues towards convergence with the few remaining controllers still adjusting if needed. Upon convergence, the final ASSIGN phase is executed which calls the PIDINIT function in

SINDA with the current setpoint, sense point, and control variable, which initializes the accumulated error term for the start of a subsequent transient solution.

During the development of this technique, other options were explored and found to not perform as well as the final algorithm. This includes only applying this methodology to the control variable, which did not allow for the nodal heat averaging over all nodes and often did not converge. Additionally, the adjustment was originally envisioned as a multiplier, but this had a near negligible effect for very low duty cycles (e.g. a 1.04/0.96 multiplier on a 4% duty cycle would take many adjustments before any meaningful response could be seen.

The overall goal was a reduction in the run time for the Roman Space Telescope observatory model to achieve quasi-steady stability. While the number of iterations needed to reach steady state increased, the ability to start the transient from a closer condition resulted in less solution time needed to reach quasi-stability and an overall reduction in run time. Figure 2 shows the PID emulation for one of the controllers where each phase can be clearly seen. Figure 3 shows a comparison of the transient model performance for a select controller and resulted in a 33% reduction in overall run time.

Figure 2. Performance of PID Heater Emulation during Steady State Solution: *APPROACH:* 0-40, *AVERAGE:* 41-70, *APPLY:* 71-90, *ADJUST:* 91-210. As the entire solution progresses, full model convergence is achieved around iteration 300 and the sensing point is very close to the setpoint of 232 K

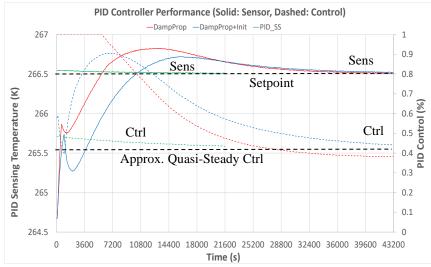


Figure 3. Performance of PID Heater with and without Steady State Emulation: The red curve represents the previous method using a damped proportional approach for steady state. The blue initialized the PID accumulated error using the damped proportional values estimated in steady state. Lastly, the green used the Predictor/Corrector approach and initialized the accumulated error using the predicted steady state values and was run for half the transient time reaching quasi-stability considerably sooner. By the end of each run, the results are similar, although the new approach reaches that point much sooner.

IV. Object Counts

A fairly common model check when integrating a source model into a destination model in Thermal Desktop is to compare the object counts between the two models, usually done at a submodel level. Any discrepancies may indicate differences that should be resolved before concluding the integration was successful. However, for model deliveries with many submodels, the practicality of comparing possibly more than 50 submodels becomes tedious at best. Therefore, the API was utilized to programmatically retrieve this information for each submodel from two models and output the results into a spreadsheet for much easier direct comparison.

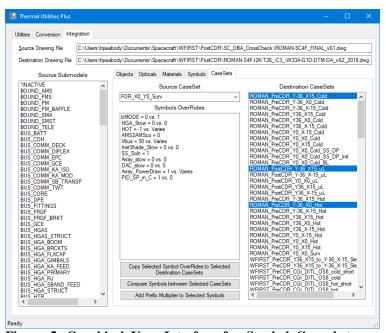
The routine begins with evaluating all Domain Tag Sets and storing the information for later use. To optimize the data retrieval, lists of Submodels, Nodes, Conductors, Contactors, HeatLoads, and Heaters for the entire model are retrieved and stored in internal variables. Each submodel is processed and the subset of nodes in that submodel are retrieved using the .Where method of the List(of Node). The type of the node (RC/TD, Diffusion, Arithmetic, etc) is readily identifiable through direct properties of a node. Surfaces and elements require iterating that the node's .AttachedConicsHandles and .AttachedObjectHandles lists.

As these lists are processed for their respective entity types, handles for Surfaces, Solids, Planar Finite Elements, and Solid Finite Elements are identified and stored separately. Upon processing all the nodes in a submodel, these four lists of handles are sorted and compressed to remove duplicate handles. The lists of Surfaces, Solids, and Finite Elements are then processed to identify any assigned MLI nodes, which are not included as unique objects in the List(of Node) previously retrieved. As each object type is identified, the object itself is retrieved, and then the properties defining the application of insulation are queried to identify MLI node numbers and store them in a master insulation node list. This master list is then used to report the number of INS nodes for each submodel.

Lastly, all Conductors, Contactors, HeatLoads, and Heaters are processed. For Conductors, the .From connection list is a single node and this handle can be compared to all node handles in the submodel subset list to determine if it matches, and therefore is related to the submodel being processed. The .To list for a Conductor may contain either nodes or surfaces. Determination of related nodes is the same as for the .To list approach, but for surface types, the comparison is made to the list of surfaces and planar finite elements determined from .AttachedConicsHandles and .AttachedObjectHandles methods earlier. In the event that a Domain Tag Set is specified, it is replaced with the handles to the objects contained in the Domain Tag Set definition processed earlier in the sequence. If a reference to the currently processed submodel is identified, then the current Conductor is identified as related to the current submodel and the Conductor count is incremented. Each Conductor is processed similarly, and the resulting count of all related entities is stored. A similar process is followed for HeatLoads, Heaters (which also includes the .ApplyConnections and .SensorConnections) and Contactors (which includes the .From and .To connections).Once all the data is processed, the results are compiled into a 2D matrix comprised of submodels and object counts for: Total Nodes, Thermal Desktop/RadCAD nodes, Diffusion Nodes, Arithmetic Nodes, Boundary Nodes, Clone Nodes, Insulation Nodes, Planar Finite Elements, Surfaces, Solids, Solid Finite Elements, Conductors, HeatLoads, Heaters, Contactors, and Measures. This matrix is then readily output as a Comma-Separated Values file for subsequent import into a spreadsheet, as shown below in Figure 4.

	A	В	С	D	E	F	G	н	1	J	K	L	м	N	0	Р	Q
1	C:\Users\hpeabody\Do	cuments\Sp	acecraft	WFIRS	ST\Pre	CDR\Deli	vered M	odels	\Telescope	OTA_CD	R_11-16	-20\RST_(DTA_CDR_IC	DA_v26_TD	v61_2019	.dwg	
2	Submodel	Tothodes	TOPEC	OIFF	BELL	BOUND	0.0NF	INS	Planarfts	sufaces	solids	solidfes	Conductors	Heatloads	Heaters	Contactors	Measures
3	*INACTIVE	2	2	0	0	0	0	0	0	1	0	0	0	0	0	1	0
4	BUS_BATT	107	107	0	0	0	0	99	88	0	0	0	0	1	1	3	0
5	BUS_CDH	84	84	0	0	0	0	0	0	12	0	0	0	2	0	2	0
6	BUS_DIPLEX	116	116	0	0	0	0	92	0	16	7	0	0	8	0	2	0
7	BUS_DPE	68	68	0	0	0	0	0	0	12	0	0	0	2	0	2	0
8	BUS_EPC	42	34	8	0	0	0	2	0	19	0	0	10	2	0	2	0
9	BUS_FITTINGS	190	190	0	0	0	0	0	32	10	16	0	0	0	0	0	0
10	BUS_GCE	64	64	0	0	0	0	17	16	2	0	0	0	1	0	2	0
11	BUS_HGAS	2462	2462	0	0	0	0	388	152	205	129	0	20	10	8	35	0
12	BUS_HGAS_STRUCT	463	463	0	0	0	0	479	190	65	108	0	5	1	1	52	0
13	BUS_HTR	39	39	0	0	0	0	0	0	39	0	0	0	0	29	11	0
14	BUS_K_BAND_MOD	149	149	0	0	0	0	34	0	16	0	0	0	2	0	2	0
15	BUS_LGA	28	28	0	0	0	0	0	0	44	0	0	12	0	0	4	0
16	BUS_LGA_MNT	43	43	0	0	0	0	27	26	0	0	0	0	0	0	4	0
17	BUS_LISS_MECH	158	158	0	0	0	0	6	0	14	202	0	2	0	2	70	0
18	BUS_MOD1	92	92	0	0	0	0	90	72	2	0	0	10	0	0	1	0
19	BUS_MOD2	587	587	0	0	0	0	377	352	4	0	0	12	0	6	11	0
20	BUS MOD3	1762	1762	0	0	0	0	320	1022	3	0	0	10	0	4	6	0

Figure 4. Sample of Object Count Output: The number of each object type associated with a given submodels is listed for further evaluation or comparison between two or more models

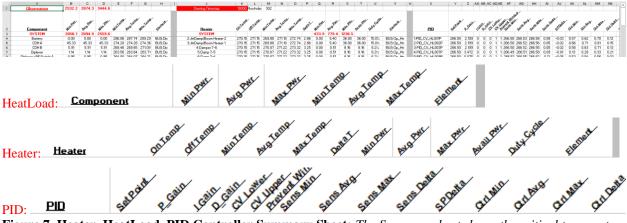

V. Copy Symbols between CaseSets

One of the more powerful features of Thermal Desktop is the ubiquitous use of symbols to control and configure a model. However, this can also lead to instances where the incorrect setting of a symbol can lead to model errors. Furthermore. incorporating numerous symbol overrides from a given CaseSet in a delivered model into a CaseSet in a destination model can be very time consuming and error prone. Needing to include these symbols in CaseSets multiple destination only compounds this challenge, although the ability to edit multiple case sets does alleviate this a bit. But when needing to integrate multiple subsystem models, each with their own sets of symbols and values, for multiple configuration cases (e.g. hot, cold, survival, stowed, etc), this can quickly be a time-consuming process to establish the correct full set of symbols in the destination model.

Using the API, an interface was developed which allows for the selection of a single CaseSet from the source model and then displays all the symbol overrides,

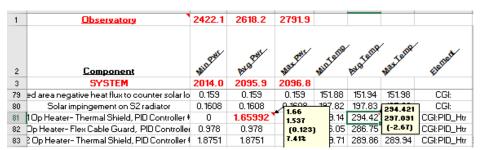
along with their override values. A listing of all the CaseSets from a destination model is also provided, and as a user selects destination CaseSets, the values for each symbol override in those CaseSets are displayed alongside the source case set symbols. If the destination symbol's values are not identical across all selected CaseSets, then the value displayed is "Varies". Use of this interface has reduced the time necessary to construct the CaseSet definition in the destination file considerably by displaying the source values and allowing for a simple button click to transfer the symbol definitions to the destination CaseSets.

Another companion capability to copying symbols between CaseSets was also developed that allows for comparison of symbols between multiple case sets. However, this feature goes deeper than a direct symbol override comparison, evaluating symbols based on based on the direct override, as well as symbols that are dependent on the overridden symbol¹. Figure 5 shows the graphical interface for copying symbols from one CaseSet to another, while Figure 6 shows the results of a comparison of symbols between multiple case sets.


Figure 5. Graphical User Interface for Symbol Copy between CaseSets: The GUI displays the symbol overrides values of the selected source as well as the corresponding values from the selected Destination CaseSets

A B C D E F 1 From: ROMAN-S4F-12K-T26C3W33A-G1D-DTM-DA_v62_2018.dwg		А	В	С	D	E	F
8 Bias_MLI 0 0 2 9 BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CGI_Bias_MLI 2 2 0 14 CG_Bias_Notree 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CG_D_O_DMI_FLX_HTR 0.003 0.004083 18 CGI_DQ_DMI_SHLD_HTR 0.003 0.004083 19 CGI_DQ_DMZ_FLX_HTR 0.00432 0.00481 20 CGI_DQ_LOXA_HTR 0.00432 0.00481 21 CG_O_DOLOXA_HTR 0.00432 0.00482 22 CGI_DQ_OBSA_1_HTR 0.01565 0.02259 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818	1	From: ROMAN-S4F-I2K-T26C3	W33A-G1D	-DTM-DA	v62_2018.0	dwg	
8 Bias_MLI 0 0 2 9 BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CGI_Bias_MLI 2 2 0 14 CG_Bias_Notree 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CG_D_O_DMI_FLX_HTR 0.003 0.004083 18 CGI_DQ_DMI_SHLD_HTR 0.003 0.004083 19 CGI_DQ_DMZ_FLX_HTR 0.00432 0.00481 20 CGI_DQ_LOXA_HTR 0.00432 0.00481 21 CG_O_DOLOXA_HTR 0.00432 0.00482 22 CGI_DQ_OBSA_1_HTR 0.01565 0.02259 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818				AN Procont	36 ASCON	35 AS JAS JA	30,15 Hot
8 Bias_MLI 0 0 2 9 BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CGI_Bias_MLI 2 2 0 14 CG_Bias_Notree 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CG_D_O_DMI_FLX_HTR 0.003 0.004083 18 CGI_DQ_DMI_SHLD_HTR 0.003 0.004083 19 CGI_DQ_DMZ_FLX_HTR 0.00432 0.00481 20 CGI_DQ_LOXA_HTR 0.00432 0.00481 21 CG_O_DOLOXA_HTR 0.00432 0.00482 22 CGI_DQ_OBSA_1_HTR 0.01565 0.02259 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818	2	Symbol	ROW	ROM	. ROM	/	
8 Bias_MLI 0 0 2 9 BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CGI_Bias_MLI 2 2 0 14 CG_Bias_Notree 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CG_D_O_DMI_FLX_HTR 0.003 0.004083 18 CGI_DQ_DMI_SHLD_HTR 0.003 0.004083 19 CGI_DQ_DMZ_FLX_HTR 0.00432 0.00481 20 CGI_DQ_LOXA_HTR 0.00432 0.00481 21 CG_O_DOLOXA_HTR 0.00432 0.00482 22 CGI_DQ_OBSA_1_HTR 0.01565 0.02259 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818	3	AMS_htr_Q_2	20.0267	22.13478	28.43089		
8 Bias_MLI 0 0 2 9 BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CGI_Bias_MLI 2 2 0 14 CG_Bias_Notree 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CG_D_O_DMI_FLX_HTR 0.003 0.004083 18 CGI_DQ_DMI_SHLD_HTR 0.003 0.004083 19 CGI_DQ_DMZ_FLX_HTR 0.00432 0.00481 20 CGI_DQ_LOXA_HTR 0.00432 0.00481 21 CG_O_DOLOXA_HTR 0.00432 0.00482 22 CGI_DQ_OBSA_1_HTR 0.01565 0.02259 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818	4	AMS_htr_Q_3	20.0267	22.13478	28.43089		
8 Bias_MLI 0 0 2 9 BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CGI_Bias_MLI 2 2 0 14 CG_Bias_Notree 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CG_D_O_DMI_FLX_HTR 0.003 0.004083 18 CGI_DQ_DMI_SHLD_HTR 0.003 0.004083 19 CGI_DQ_DMZ_FLX_HTR 0.00432 0.00481 20 CGI_DQ_LOXA_HTR 0.00432 0.00481 21 CG_O_DOLOXA_HTR 0.00432 0.00482 22 CGI_DQ_OBSA_1_HTR 0.01565 0.02259 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818	5	AMS_htr_Q_4	30.07519	33.241	42.69621		
8 Bias_MLI 0 0 2 9 BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CGI_Bias_MLI 2 2 0 14 CG_Bias_Notree 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CG_D_O_DMI_FLX_HTR 0.003 0.004083 18 CGI_DQ_DMI_SHLD_HTR 0.003 0.004083 19 CGI_DQ_DMZ_FLX_HTR 0.00432 0.00481 20 CGI_DQ_LOXA_HTR 0.00432 0.00481 21 CG_O_DOLOXA_HTR 0.00432 0.00482 22 CGI_DQ_OBSA_1_HTR 0.01565 0.02259 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818	6	AMS_htr_Q_6	30.07519	33.241	42.69621		
BUS_SCESTAR 0.03 0.03 0.01 10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CGI_Bias_General 2 2 0 13 CGI_Bias_General 2 2 0 14 CGI_Bias_MLI 2 2 0 15 CGI_Bias_Voltage 0 0 2 16 CGI_DQ_DM1_FLX_HTR 0.003 0.003 0.004083 17 CGI_DQ_DM2_FLX_HTR 0.001565 0.00213 17 CGI_DQ_DM2_FLX_HTR 0.003 0.004083 18 CGI_DQ_DM2_FLX_HTR 0.003 0.004083 20 CGI_DQ_CM2_FLX_HTR 0.00432 0.00483 21 CGI_DQ_CM2_FLX_HTR 0.00432 0.00483 22 CGI_DQ_CM2_FLX_HTR 0.00432 0.005881 23 CGI_DQ_CM2_FLX_HTR 0.00432 0.005881 22 CGI_DQ_OBSA_1_0_HTR 0.011613 0.01580	7	Array_PowerDraw	1	1	0		
10 BUS_SCESTAR_SA 0.03 0.03 0.01 11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CG_Bias_General 2 2 0 13 CG_Bias_MLI 2 2 0 14 CGI_Bias_Power 0 0 2 15 CG_Bias_Voltage 0 0 2 16 CGI_DQ_DM1_FLX_HTR 0.001565 0.00213 17 CGI_DQ_DM1_SHLD_HTR 0.003 0.004083 18 CG_DQ_DM2_FLX_HTR 0.001565 0.001565 0.00213 19 GGI_DQ_DM2_FLX_HTR 0.0033 0.004083 0 20 GG_DQ_DM2_GLN_HTR 0.00432 0.005881 0 21 CGI_DQ_COSA_1_0_HTR 0.001422 0.005881 0 22 CGI_DQ_OBSA_1_HTR 0.011613 0.015806 0 23 CGI_DQ_OBSA_1_HTR 0.013091 0.01391 0.0137818 24 CGI_DQ_OBSA_2_HTR 0.013091 0.013091	8	Bias_MLI	0	0	2		
11 BUS_SCESTAR_TOP_DECK 0.03 0.03 0.01 12 CGI_Bias_General 2 2 0 13 CGG_Bias_MLI 2 2 0 14 CGI_Bias_MLI 2 2 0 14 CGI_Bias_MLI 2 2 0 14 CGI_Bias_Voltage 0 0 2 16 CGI_DO_DM1_FLX_HTR 0.001565 0.00213 17 CGI_DO_DM1_SHLD_HTR 0.003 0.004083 18 CGI_DO_DM2_FLX_HTR 0.001565 0.00213 19 CGI_DO_CM2_SHLD_HTR 0.003 0.00483 20 CGI_DO_CM2_SHLD_HTR 0.00432 0.005881 21 CGI_DO_COSA_10_HTR 0.00432 0.00432 0.005881 22 CGI_DO_OBSA_1_HTR 0.011613 0.011613 0.015806 23 CGI_DO_OBSA_1_HTR 0.013091 0.012781 22 24 CGI_DO_OBSA_1_HTR 0.013091 0.01391 0.013781 25	9	BUS_SCESTAR	0.03	0.03	0.01		
Image: Control of Contrect of Contrect of Control of Control of Control of Control of C	10	BUS_SCESTAR_SA	0.03	0.03	0.01		
13 CG_Bias_MLI 2 2 0 14 CGI_Bias_Power 0 0 2 15 CG_Bias_Voltage 0 0 2 16 CGI_DO_DM1_FLX_HTR 0.001565 0.00213 17 CG_DO_DM1_SHLD_HTR 0.003 0.004083 18 CGI_DO_DM2_FLX_HTR 0.00365 0.004083 20 CGI_DO_DM2_SHLD_HTR 0.00432 0.00438 20 CGI_DO_LOCAM_HTR 0.00432 0.00438 21 CGI_DO_LOCAM_HTR 0.001555 0.025881 22 CGI_DO_OBSA_1_HTR 0.011613 0.011613 0.015806 23 CGI_DO_OBSA_1_HTR 0.013091 0.017818 2 24 CGI_DO_OBSA_2_HTR 0.013091 0.017818 2 25 CGI_DO_OBSA_4_HTR 0.013091 0.017818 2 26 CGI_DO_OBSA_4_HTR 0.013091 0.017818 2 26 CGI_DO_OBSA_4_HTR 0.021176 0.02824	11	BUS_SCESTAR_TOP_DECK	0.03	0.03	0.01		
14 CG_Bias_Power 0 0 2 15 CGI_Bias_Voltage 0 0 2 16 CGI_DQ_DM1_FLX_HTR 0.001565 0.00213 17 CG_DQ_DM1_SHLD_HTR 0.003 0.004083 18 CGI_DQ_DM2_FLX_HTR 0.001565 0.00213 19 CG_DQ_DM2_SHLD_HTR 0.003 0.004083 20 CG_DQ_EXCAM_HTR 0.00432 0.00432 21 CGI_DQ_EXCAM_HTR 0.00432 0.00432 22 CGI_DQ_EXCAM_HTR 0.00432 0.00432 23 CGI_DQ_OBSA_10_HTR 0.011613 0.015865 23 CGI_DQ_OBSA_1_HTR 0.013091 0.0137818 24 CGI_DQ_OBSA_2_HTR 0.013091 0.013091 25 CGI_DQ_OBSA_3_HTR 0.013091 0.0137818 26 CGI_DQ_OBSA_4_HTR 0.021176 0.02824	12	CGI_Bias_General	2	2	0		
15 CG_Bias_Voltage 0 0 2 16 CGI_DQ_DM1_FLX_HTR 0.001565 0.00213 17 CG_DQ_DM1_SHLD_HTR 0.003 0.004083 18 CGI_DQ_DM2_FLX_HTR 0.001565 0.00213 19 CGI_DQ_DM2_FLX_HTR 0.001565 0.00213 19 CGI_DQ_DM2_FLX_HTR 0.003 0.004083 20 CG_DQ_DM2_SHLD_HTR 0.003 0.004083 20 CG_DQ_EXCAM_HTR 0.00432 0.00432 21 CGI_DQ_OBSA_10_HTR 0.011613 0.015613 22 CGI_DQ_OBSA_1_HTR 0.011613 0.015806 23 CGI_DQ_OBSA_1_HTR 0.013091 0.013718 24 CGI_DQ_OBSA_2_HTR 0.013091 0.013091 25 CGI_DQ_OBSA_3_HTR 0.013091 0.013718 25 CGI_DQ_OBSA_4_HTR 0.021176 0.02824	13	CGI_Bias_MLI	2	2	0		
16 CGI_DQ_DM1_FLX_HTR 0.001565 0.00213 17 CGI_DQ_DM1_SHLD_HTR 0.003 0.004083 18 CG_DQ_DM2_FLX_HTR 0.001565 0.001565 0.00213 19 CGI_DQ_DM2_FLX_HTR 0.001565 0.0013 0.004083 20 CGI_DQ_DM2_SHLD_HTR 0.003 0.00432 0.00483 20 CGI_DQ_EXCAM_HTR 0.00432 0.00432 0.005881 21 CGI_DQ_OBSA_10_HTR 0.011613 0.015613 0.015806 23 CGI_DQ_OBSA_1_HTR 0.013091 0.013091 0.0137818 24 CGI_DQ_OBSA_2_HTR 0.013091 0.013091 0.0137818 26 CG_DQ_OBSA_4_HTR 0.013091 0.013091 0.013818 26 CG_GDQ_OBSA_4_HTR 0.021176 0.02824	14	CGI_Bias_Power	0	0	2		
17 CG_DQ_DM1_SHLD_HTR 0.003 0.004083 18 CG_DQ_DM2_FLX_HTR 0.001565 0.00213 19 CG_DQ_DM2_SHLD_HTR 0.003 0.004083 20 CGI_DQ_EXCAM_HTR 0.0032 0.00432 21 CG_DQ_LOCAM_HTR 0.00432 0.00432 22 CGI_DQ_COSA_10_HTR 0.01613 0.011613 0.01565 22 CGI_DQ_OBSA_10_HTR 0.011613 0.01565 0.022529 24 CGI_DQ_OBSA_1_HTR 0.013091 0.017818 25 CGI_DQ_OBSA_2_HTR 0.013091 0.017818 26 CGI_DQ_OBSA_4_HTR 0.021176 0.02824	15	CGI_Bias_Voltage	0	0	2		
18 CG_DQ_DM2_FLX_HTR 0.001565 0.00213 19 CGL_DQ_DM2_SHLD_HTR 0.003 0.00432 0.00483 20 CGL_DQ_EXCAM_HTR 0.00432 0.00432 0.005881 21 CGL_DQ_OCAM_HTR 0.00432 0.00432 0.005881 22 CGL_DQ_OSA_10_HTR 0.01613 0.011613 0.015806 23 CGL_DQ_OSA_1_HTR 0.016552 0.022529 24 CGL_DQ_OSA_2_HTR 0.013091 0.013091 0.01391 25 CG_DQ_OSA_3_HTR 0.013091 0.013091 0.01391 26 CGL_DQ_OSA_4_HTR 0.021176 0.028824	16	CGI_DQ_DM1_FLX_HTR	0.001565	0.001565	0.00213		
19 CG_DQ_DM2_SHLD_HTR 0.003 0.004083 20 CGL_DQ_EXCAM_HTR 0.00432 0.00432 0.005881 21 CGL_DQ_LOCAM_HTR 0.00432 0.00432 0.005881 22 CGL_DQ_OBSA_10_HTR 0.01613 0.011613 0.015806 23 CGL_DQ_OBSA_1_HTR 0.01652 0.01252 0.022529 24 CGL_DQ_OBSA_2_HTR 0.013091 0.013091 0.0137818 25 CG_DQ_OBSA_3_HTR 0.013091 0.013091 0.0137818 26 CGL_DQ_OBSA_4_HTR 0.021176 0.02824	17	CGI_DQ_DM1_SHLD_HTR	0.003	0.003	0.004083		
20 CG_DQ_EXCAM_HTR 0.00432 0.00432 0.005881 21 CGI_DQ_LOCAM_HTR 0.00432 0.00432 0.005881 22 CGI_DQ_OBSA_10_HTR 0.011613 0.011613 0.015806 23 CG_DQ_OBSA_1_HTR 0.016552 0.022529 24 CGI_DQ_OBSA_2_HTR 0.013091 0.0137818 25 CG_DQ_OBSA_3_HTR 0.013091 0.013091 26 CGI_DQ_OBSA_4_HTR 0.021176 0.028824	18	CGI_DQ_DM2_FLX_HTR	0.001565	0.001565	0.00213		
21 CG_DQ_LOCAM_HTR 0.00432 0.00432 0.005881 22 CGLDQ_OBSA_10_HTR 0.011613 0.011613 0.015806 23 CG_DQ_OBSA_1_HTR 0.015552 0.022529 24 CGLDQ_OBSA_2_HTR 0.013091 0.013091 25 CG_DQ_OBSA_3_HTR 0.013091 0.013091 26 CG_DQ_OBSA_4_HTR 0.013091 0.013091 26 CG_DQ_OBSA_4_HTR 0.021176 0.021824	19	CGI_DQ_DM2_SHLD_HTR	0.003	0.003	0.004083		
22 CG_D_Q_OBSA_10_HTR 0.011613 0.011613 0.015806 23 CG_D_Q_OBSA_1_HTR 0.016552 0.016552 0.022529 24 CG_D_Q_OBSA_2_HTR 0.013091 0.013091 0.017818 25 CGL_Q_OBSA_3_HTR 0.013091 0.013091 0.017818 26 CGL_Q_OBSA_4_HTR 0.021176 0.021824	20	CGI_DQ_EXCAM_HTR	0.00432	0.00432	0.005881		
23 CG_DQ_OBSA_1_HTR 0.016552 0.012552 0.022529 24 CG_DQ_OBSA_2_HTR 0.013091 0.013091 0.017818 25 CGLDQ_OBSA_3_HTR 0.013091 0.013091 0.017818 26 CGLDQ_OBSA_4_HTR 0.021176 0.021824	21	CGI_DQ_LOCAM_HTR	0.00432	0.00432	0.005881		
24 CG_DQ_OBSA_2_HTR 0.013091 0.013091 0.017818 25 CGLDQ_OBSA_3_HTR 0.013091 0.013091 0.017818 26 CGLDQ_OBSA_4_HTR 0.021176 0.021176 0.02824	22	CGI_DQ_OBSA_10_HTR	0.011613	0.011613	0.015806		
25 CG_DQ_OBSA_3_HTR 0.013091 0.013091 0.017818 26 CGLDQ_OBSA_4_HTR 0.021176 0.021176 0.02824	23	CGI_DQ_OBSA_1_HTR	0.016552	0.016552	0.022529		
26 CGI_DQ_OBSA_4_HTR 0.021176 0.021176 0.028824	24	CGI_DQ_OBSA_2_HTR	0.013091	0.013091	0.017818		
	25	CGI_DQ_OBSA_3_HTR	0.013091	0.013091	0.017818		
27 CGLDO OBSA 5 HTR 0.013091 0.017818	26	CGI_DQ_OBSA_4_HTR					
	27	CGI_DQ_OBSA_5_HTR	0.013091	0.013091	0.017818		

Figure 6. Symbol Comparison Output: The comparison of the three selected Destination CaseSets highlights the differences in symbol values, including the dependencies of the direct overrides.


VI. Model Prediction Comparison

Beyond the comparison of object counts and symbols between models, a methodology was also sought to easily compare predictions between models. Previous efforts¹ included the capability to output Heater, Heat Load, and PID controller information at each timestep. This approach reads through the CondCap file generated by ThermalDesktop prior to the execution of SINDA. During this read, it identifies SINDA code associated with the application of HeatLoads, Heaters, and PID controllers and extracts the defining parameters (e.g. ,setpoint, heat dissipations, control variable, etc). These values and variables associated with them are then processed to generate specialized logic to be included during the model execution in SINDA, which in turn produces relevant data in the output file related to the HeatLoads, Heaters and PID controllers at every timestep during the solution. After model execution, the output file is then processed to extract the data and imports it into a template Microsoft Excel® workbook for further processing, shown in Figure 7.

Figure 7. Heater, HeatLoad, PID Controller Summary Sheet: The Summary sheet shows the critical temperature and power data for all HeatLoads, Heaters, and PID Controllers found in a model (Headers enlarged)

A new comparison utility was recently added to identify significant differences between two model outputs based on the data on the Summary tab, shown in Figure 8. Two files are supplied to the routine and it evaluates the data, identifying temperature deviations of more than 2 K and any differences in power (Dissipation, Heater, or Control Variable). Power differences of more than 5% are identified by bold, red text; power differences between 2-5% are identified by bold orange text. All differences of consequence are captured as a comment to the worksheet cell, which includes: the base value, compare value, difference, and percent difference (if a power value). Figure 7 shows the Summary_Compare sheet with the comments identifying significant differences. At this time, the comparison is keyed off the name of the HeatLoad, Heater, or PID Controller. Therefore, comparisons are limited based on those names and to the same software, but the general intent is to be able to verify that the performance of a subsystem model is consistent when integrated to the next higher level of assembly, and the renaming of these object types should not be expected. Furthermore, these is no effective way to graphically display these values (e.g. contour plot on a 3D model) as many of the values represent a subset of all nodal values, but do represent critical locations where heat is applied or temperatures are directly impacted by the application of heat. In this sense, tabulation of the data and the differences is judged the best means to display this data.

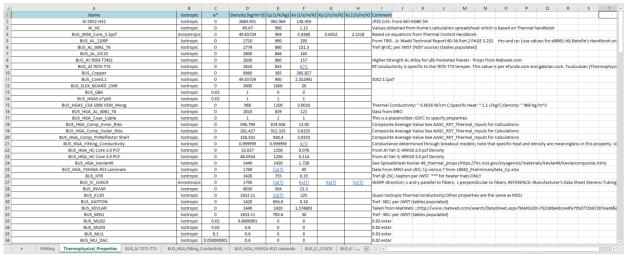
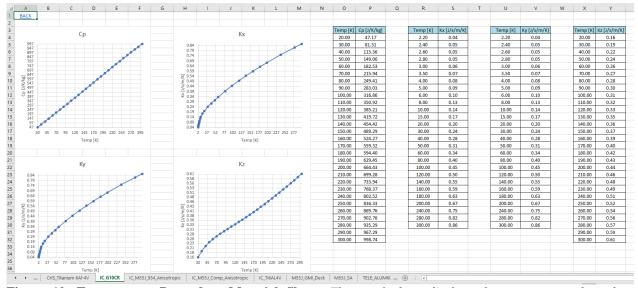


Figure 8. Heater, HeatLoad, PID Controller Summary_Compare Sheet: *The Summary_Compare sheet highlights differences between two files as comments for each cell (including the two values, difference, and percent difference for power values) with a comment in A1 listing the compare filename for reference*


VII. Property Documentation

Thermal Desktop stores optical and material property data in text files and displays the property values in the main GUI. However, the data itself is not easily extracted from these text files without a better understanding of the format nor is it easily exported to other programs from within Thermal Desktop. That said, the API does offer functions for retrieving the data programmatically for further manipulation. Basic functions had been written previously to extract this data, but while the output format was functional, it was not particularly user friendly. A new function was developed to improve the data format for presentations or inclusion in documentation.

After extracting the properties through the API, a spreadsheet is generated to display the material properties line by line. Pertinent information regarding material name, isotropy, effective emissivity, density, specific heat, thermal conductivity in XYZ directions, and comments are listed in individual columns. If the specific heat or any thermal conductivity are temperature dependent, a new sheet is created with the material name and includes the tabulated values and corresponding plots to visualize the dependence. Hyperlinks are generated to provide greater ease in shifting between the material list and temperature dependent data. Regarding thermo-optical properties, a similar documentation process is done with Beginning-of-Life and End-of-Life as defining categories. Figure 9 shows the thermo-physical property table, while Figure 10 shows an example of a fully populated temperature dependent material sheet.

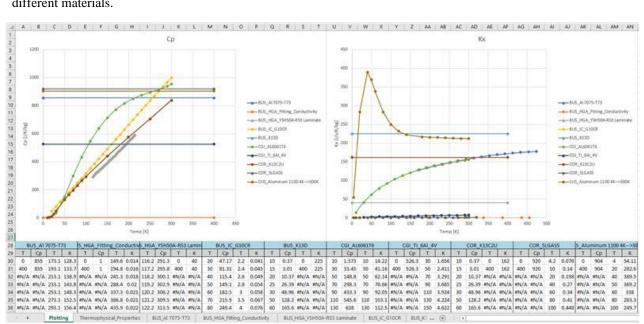


Figure 9. Thermo-physical Property Sheet: The excel sheet displays the thermophysical list for further evaluation or comparison between materials. Hyperlinks are highlighted to indicate temperature dependent data is available.

Figure 10. Temperature Dependent Material Sheet: *The excel sheet displays the temperature dependent properties and associated tabulated values. A back button allows quick return to the table of all properties.*

A material comparison sheet is also provided to compare properties. 10 drop down menus are included, each containing all available materials. Selecting a particular material populates the specific heat and thermal conductivity data table and updates the data displayed in the plots. If the property value is constant, the data is shown as a constant value ranging from a default of 0 to 400. Figure 11 depicts the worksheet after specifying 10 different materials.

Figure 11. Material Comparison Sheet: The excel sheet display graphs of specific heat and thermal conductivity in the x-direction for up to 10 materials. Each material has its respective values beneath the graphs.

VIII. Framework and Interface

The various capabilities described in this paper were added to the framework¹ developed at the Goddard Space Flight Center. Table 1 lists the new functions added, and a complete list of functions in the framework may be found in the appendix. The goal was to minimize, as much as possible, the need for a graphical interface to access the capabilities of the framework, allowing users to develop their own interface to the framework capabilities. Entries in italics utilize the OpenTD API, while the others are utility functions that do not require a connection to the API.

Framework Function	Purpose
	Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector
GenerateDampedPropHeatersInSSForPIDs	approach for all PID controllers
	Generate Compare_Summary sheet highlighting the differences between two
GenerateHtrDisSummaryCompare	HtrDis postprocessing files
	Extract Material and Optical property data and generate Tables in Excel
WritePropsToXL	workbook along with temperature dependent material property plots
	Return data structure with deterministic global visibility state for each
GetTDGlobalVisibilityStates	Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc)
TurnNodeIDsOnForSelectedNodes	Evaluate user provided node list and turn node number visibility on in GUI
<i>GetTDObjectCounts</i>	Retrieve counts for each TD object type for each submodel
GetTDReferencedProperties	Retrieve list of Material and Optical properties used by each submodel
	Retrieve counts for each TD object type and lists of Material and Optical
GetTDObjectCountsAndReferencedProperties	properties for each submodel
GetAllReferencedRCOFiles	Make list of all Optical files that were referenced throughout all CaseSets
GetAllReferencedTDPFiles	Make list of all Material files that were referenced throughout all CaseSets
Table 1 List of nor	v Functions added to CSEC Developed Framework

Table 1 – List of new Functions added to GSFC Developed Framework

The GUI developed at GSFC was updated to provide a means of access to these functions without the need for a user to write their own code to access the functionality. This GUI is currently split across two separate tabs; one is useful for manipulating and processing files and executing CaseSets. The other is geared toward utilities for model integration/comparison. This GUI is depicted in Figure 12.

ilties Conversion Integra	ration								Utilities Conversion Integration					
Trawing File Double Click i	in any of the Text	t Boxes belo	w to Select Fi	les			Drawing Actions	$\overline{}$	Source Drawing File \hpeabody	Docum	ients\Spacecraft\WFIRST\P	ostCDR\Delivered_Models\BUS	ROMAN-SC4F_FINAL\ROM	IAN-SC4F_FINA
aseSet					~	Fiter	CaseSet Actions	-	Destination Drawing File C:\Users\hp	peabody	y\Documents\Spacecraft\W	FIRST\PostCDR\ROMAN-S4F-I2	2K-T26C3W33A-G1D-DT	M-DA_v62_201
Run Case Run Cases					-			-	Source Submodels	0	bjects Opticals Materials	Symbols CaseSets		
Radition Task to Filter				~	2 Use Exis	sting Files if found			*INACTIVE A BOUND_AMS		Object Counts		Object List	
Submodel/Pattern to Mate	tch <i>Bii Cutoff</i>	Bii Sum	K A-	Submodel		Filename			BOUND_FMS BOUND_PM		Total Nodes:84 TD/RC Nodes:84	CDH A::1D0ACC Power: 50.106		
Minimum Threshold		By SUM	Keep As	Submoder	1	riename			BOUND_PM_BAFFLE BOUND_SMA		Diffusion Nodes:0 Arithmetic Nodes:0	CDH B::1D0ACD		
A SUBMODEL1,PATTER		0.95	QBL V						BOUND_SMST BOUND_TELE		Boundary Nodes:0 Clone Nodes:0	Power: 6.531		
B		1							BUS_BATT BUS_CDH		INS Nodes:0 Planar FEs:0			
c					1				BUS_COMM_DECK BUS_COMM_DIPLEX		Surfaces:12 Solids:0			
-									BUS COMM EPC		Solid FEs:0			
									BUS_COMM_GCE		Conductors:0			
D									BUS_COMM_KA_ISO BUS_COMM_KA_MOD		Heat Loads:2 Heaters:0			
Add Logic For: 🗹 Heater	er/Dissipation Proc	cessing 🗹		troller 🗹 Conve	rgence Trace	Make Case Run Case			BUS_COMM_KA_ISO BUS_COMM_KA_MOD BUS_COMM_SB_TRANSP BUS_COMM_TWT		Heat Loads:2			
L	er/Dissipation Proc	cessing 🗹		troller 🗹 Conve	rgence Trace	Make Case Run Case			BUS_COMM_KA_ISO BUS_COMM_KA_MOD BUS_COMM_SB_TRANSP BUS_COMM_TWT BUS_CORE BUS_CORE		Heat Loads:2 Heaters:0 Contactors:2			
Add Logic For: I Heater	er/Dissipation Proc	cessing 🗹		troller 🗹 Conve	rgence Trace	Make Case Run Case]		BUS_COMM_KA_NOD BUS_COMM_KA_MOD BUS_COMM_SB_TRANSP BUS_COMM_TWT BUS_CORE BUS_DPE BUS_PTTINGS BUS_FRGF		Heat Loads:2 Heaters:0 Contactors:2			
Add Logic For: I Heater Compile ptics File	er/Dissipation Proc	cessing 🗹		troller 🗹 Conve	rgence Trace	Make Case Run Case]		BUS_COMM_KA_ISO BUS_COMM_KA_MOD BUS_COMM_SB_TRANSP BUS_COMM_TWT BUS_COME BUS_COME BUS_FITTINGS BUS_FRGF BUS_FRGF BUS_FRGF BUS_FRGF_BRKT BUS_FRGF_BRKT		Heat Loads:2 Heaters:0 Contactors:2			
Add Logic For: Heater Comple ptics File termo File	er/Dissipation Proc	cessing 🗹		troller 🗹 Conve	rgence Trace	Make Case Run Case]	~	BUS_COMM_KA_MOD BUS_COMM_KA_MOD BUS_COMM_SB_TRANSP BUS_COMM_SB_TRANSP BUS_COMM_TWT BUS_DPE BUS_FRGF BUS_FCC BUS_F		Heat Loads:2 Heaters:0 Contactors:2			
Add Logic For: Heater Comple ptics File ptics File put File	er/Dissipation Proc	cessing 🔽		Iroller 🗹 Conve	rgence Trace	Make Case Run Case] Input Actions	~	BUS_CONM_KA_ISO BUS_CONM_KA_IMOD BUS_CONM_SB_TAANSP BUS_CONM_SB_TAANSP BUS_OPE BUS_FROF BUS_FROF BUS_FROF BUS_FROF_BRAT BUS_FRAS_STRUCT BUS_FRAS_STRUCT BUS_FRAS_BOOM BUS_FRAS_BOOM BUS_FRAS_BOOM		Heat Loads:2 Heaters:0 Contactors:2			
Add Logic For: ☑ Heater Comple ptics File permo File put File porCap File	er/Dissipation Proc	cessing 🔽		Irolier 🗹 Conve	rgence Trace	Make Case Run Case	Input Actions	~	BUS_COMM_KA_ISO BUS_COMM_KA_ISO BUS_COMM_YTVT BUS_COFE BUS_PERF BUS_PERF BUS_FROF BU		Heat Loads:2 Heaters:0 Contactors:2			
Add Logic For: V Heater Comple ptics File put File ptiptic File put File ptiptic File ptiptic File	sr/Dissipation Proc			roller 🗹 Conve	rrgence Trace	Make Case Pun Case]	>	BUS_COMM_KA_SO BUS_COMM_KA_MOD BUS_COMM_SB_THANSP BUS_COMM_SB_THANSP BUS_COMM_SB_THANSP BUS_TITIENS BUS_TITIENS BUS_TITIENS BUS_TRAF_BRAT BUS_TAGE_STRUCT BUS_		Heat Loads:2 Heaters:0 Contactors:2			
Add Logic For: V Heater Comple	sr/Dissipation Proc			roller 🗹 Conve	rgence Trace	Make Case Pun Case]	>	BUS_COMM_KALSD BUS_COMM_KALMONAPP BUS_COMM_TWT BUS_COMM_TWT BUS_COMM_TWT BUS_COMM_TWT BUS_COME BUS_TTTNGS BUS_TGC BUS_		Heat Loads:2 Heaters:0 Contactors:2	<		
Add Logic For: ✓ Heater Comple ptics File puts File ogCap File utgput File ut	sr/Dissipation Proc		PID SS Cont]	>	BUS_COMM_KA_SDO BUS_COMM_KA_MOD BUS_COMM_KA_MOD BUS_COMM_TWT BUS_COFE BUS_FROF BUS_F		Heat Loads:2 Heaters:0 Contactors:2	Check Heater SS (Compare Assemblies Com	pare Object Co
Add Logic For: 🗹 Heater	er/Dissipation Proc	cessing				Make Case Pun Case]	>	BUS_COMM_FALSO BUS_COMM_FALMOD BUS_COMM_FALMOD BUS_COMM_FIT BUS_COMM_FIT BUS_F		Heat Goads 2 Heaters:0 Contactors:2 Measures:0	< t Creck Heater SS 8	Compare Assembles Com	pare Object Cou

Figure 12. Simplistic Graphical User Interface to access framework functions: A simplistic interface was developed to more easily specify files and parameters to access the framework capabilities

IX. Conclusions and Path Forward

The continued addition of capabilities to the OpenTD API has allowed users greater access to the internal data in Thermal Desktop models. The Goddard Space Flight Center continues to explore the exposed data, seeking new methods to optimize our thermal analysis process and expand our capabilities. The ability to inject these features into the model execution process has helped streamline the process and minimizes the amount of user intervention required to take advantage of the developed features.

The most recent efforts have focused primarily on improving the model integration and verification part of the process. These added abilities allow a quick check that the same number of objects are present in both the source and integrated models for each submodel and to import symbols from delivered case sets into their counterparts in the integrated model. Further development of the "Compare" capability of the Heat Load, Heater, and PID Controller summary sheets also allows for the verification of consistent predictions between delivered and integrated models. To provide better documentation of the optical and material properties, the output from the previous code was improved to more easily visualize the data extracted from the models. Lastly, the development of a new heater routine for better predictive capabilities of PID controlled heaters is already beginning to pay dividends for the Roman Space Telescope project, with a considerable reduction in the necessary run time to achieve quasi-steady predictions for many of its mission modes. Furthermore, the ability to utilize steady state solution predictions, bypassing the need for longer transient runs, is also being investigated and shows promise at this time. While this code was developed specifically for SINDA, the algorithm is fairly easily convertible to other codes that utilize a similar solution structure as SINDA with convergence and VARIABLES user logic blocks.

The process is currently underway to allow the release of these capabilities to the wider community, both the executable and the source code, with the hope that other organizations will add to these capabilities and also share their developments with the community. At this time, there are no plans to output to other formats, but once the source code is released, any users wishing to expand the output options to other formats (e.g. web-based pages) are free to utilize the framework provided to assist in that effort. As new capabilities are added to the OpenTD API, GSFC will continue to explore the exposed data seeking even more improvements to its analysis processes and work to share them with the thermal community.

Acknowledgments

The primary author would like to thank the Roman Space Telescope project for continuing to support the exploration of the API to improve our processes and reduce the model run time.

References

¹ Peabody, H., "Extending the Capabilities of Thermal Desktop with the OpenTD Application Programming Interface" ICES-2020-297, 50th International Conference on Environmental Systems, 2020

² Peabody, H., "Tracking Critical Thermal Metrics throughout the Life Cycle of a Large Observatory Thermal Model" ICES-2020-298, 50th International Conference on Environmental Systems, 2020

10

International Conference on Environmental Systems

³ Peabody, H., Yee, E., "Run Time Improvement Efforts for the Roman Space Telescope Thermal Analysis" ICES-2021-253, 51st International Conference on Environmental Systems, 2021

Appendix

The table below lists the current functions in the framework. Those with a preceding * are newly added. Those in italics interface directly with Thermal Desktop through the OpenTD API, while the others interface with files that may or may not have been generated using Thermal Desktop and does not require the API.

Framework Function	Purpose
	Process SINDA .inp file and add logic to .htr file to output Heater and
GenerateHeaterDissipationLogic	Dissipation output logic for every timestep
	Process SINDA .out file and retrieve output generated from
ProcessHeaterDissipationResults	GenerateHeaterDissipationLogic and import into Excel template workbook
	Process SINDA .inp file and add logic to .pid file to apply Predictor/Corrector
*GenerateDampedPropHeatersInSSForPIDs	approach for all PID controllers
	Generate Compare_Summary sheet highlighting the differences between two
*GenerateHtrDisSummaryCompare	HtrDis postprocessing files
	Convert 2D array to comma-separated value output file (can include Header
Write2DArrayToCSVFile	row and Output Mask)
ImportFileIntoExcel	Import specified text file into specified Excel location, parsing on delimiter
	Extract lines beginning with TagID from OutFile and import into specified
ExtractTaggedLinesAndImportIntoExcel	Excel location, parsing on specified delimiter
	Return data structure with deterministic global visibility state for each
*GetTDGlobalVisibilityStates	Thermal Desktop object type (e.g. TD/RC nodes, Surfaces, HeatLoads, etc)
*TurnNodeIDsOnForSelectedNodes	Evaluate user provided node list and turn node number visibility on in GUI
*GetTDObjectCounts	Retrieve counts for each TD object type for each submodel
*GetTDReferencedProperties	Retrieve list of Material and Optical properties used by each submodel
	Retrieve counts for each TD object type and lists of Material and Optical
*GetTDObjectCountsAndReferencedProperties	properties for each submodel
*GetAllReferencedRCOFiles	Make list of all Optical files that were referenced throughout all CaseSets
*GetAllReferencedTDPFiles	Make list of all Material files that were referenced throughout all CaseSets
RemoveRadk1FromRadk2	Outputs file with all the Radks that appear only in Radk File 2
	Outputs file with inputs and logic to represent all the Radks in Radk2 but not
ReplaceRadk2MinusRadk1WithBackloads	in Radk1 as Backloads along with radiation to sink
	Outputs file with inputs and logic to represent all the Radks in Radk2 but not
ReplaceRadk2MinusRadk1WithHeatFlowsIJ	in Radk1 as a Heat Flow
	Generates temporary case set, outputs CC file and processes this for evaluated
<i>EvaluateSymbolsInDWGFile</i>	symbol values
	Generates temporary case set spawned from user specified case, outputs CC
EvaluateSymbolsForSpecifiedCaseSet	file and processes this for evaluated symbol values
ExtractSymbolEvaluatedValuesFromCCFile	Process CC file header and retrieves symbol names and evaluated values
	Read TD object and extract optical properties and store in
GetTDOptProps	GMM_OpticalProperties collection
	Read TD object and extract thermophysical properties and store in
GetTDThermoProps	GMM_ThermophiysicalProperties collection
	Extract Material and Optical property data and generate Tables in Excel
*WritePropsToXL	workbook along with temperature dependent material property plots
	Read TD object and extract Notes data and Splice together all Tabs into single
GetTDNotes	output text file
	Return path to either DWG file if No CaseSet specified with UserDirectory, or
GetTDRunDirectory	to UserDirectory
	Execute case set in its own directory with options to add heater dissipation
RunSpecifiedCaseSet	and convergence trace logic