TFAWS Cryothermal Paper Session

Tank Sizing Analysis for the Reduced Gravity Cryogenic Transfer Receiver Tank

Erin M. Tesny, Daniel M. Hauser, Jason W. Hartwig NASA Glenn Research Center, Cleveland, OH, USA

Presented By Erin Tesny

Thermal & Fluids Analysis Workshop TFAWS 2021 August 24-26, 2021 Virtual Conference

Overview

- Tank Chilldown Background
- Modeling Overview
 - Tank descriptions
 - Charge/Hold/Vent procedure
- Results
- Conclusions
- Future Work

- Understanding fluid behavior in microgravity is essential to further development of in-space cryogenic systems
 - No current published data on tank chilldown in microgravity
- Reduced Gravity Cryogenic Transfer (RGCT) project is designed to investigate tank chilldown in a microgravity environment onboard a parabolic flight
 - 1 parabolic flight consists of 25 parabolas, 60s each
- Current study: what is appropriate tank size to complete chill down during 1 flight given 3 possible different chilldown scenarios?
 - Goal is to chill down the tank wall to some target temperature by the end of the flight

Tank Descriptions

- Tank Parameters to investigate:
 - Small vs. Large Tank
 Volume
 - Thin vs. Thick-walled

Tank 1A Vol: 7.953 ft³ (0.2252m³)

Tank 2A/2B Vol: 31.94 ft³ (0.9044 m³)

42"

Tank	Description	Dry Mass (kg)	Internal Volume (m ³)	MEOP (psia)	Wall Thickness (in)
1A	Lower Limit	30.2	0.225	50	3/16"
2A	Upper Limit	79.0	0.904	64.3	3/16"
2B	Upper Limit, Thick-Walled	158.2	0.904	330	3/8"

- Thermal Desktop, multi-node model
- Working Fluid: nitrogen
- Tank wall material: Aluminum 2219
- Fluid in tank is modeled as twin lumps (liquid + vapor)
- Bottom fill dip tube injector with top vent
- Monitoring liquid temperature, pressure, and average tank wall temperature

Charge/Hold/Vent Procedure

- Charge/Hold/Vent (C/H/V) Chilldown:
 - Charge: Supply Valve Open/Vent Valve Closed
 - Hold: Supply Valve Closed/Vent Valve Closed
 - Vent: Supply Valve Closed/ Vent Valve Open
 - Pattern is repeated once every 60s (or once per 1 parabola)

Different Chilldown Scenarios

Case No.	Parasitic Heat Load?	Flow Rate (gps)	Operation
1	No	100	Charge: 20s/ Hold: 25s / Vent: 20s
2	Yes	100	Charge: 20s/ Hold: 25s / Vent: 20s
3	Yes	50	Charge: 20s/ Hold: 25s / Vent: 20s
4	Yes	100	Charge: 17s/ Hold: 73s / Vent: 30s

Tank 1A Results

Tank 1A Liquid Lump Pressure Vs. Time

Tank 1A Results (Cont'd)

Tank 1A Average Tank Wall Temperature Vs. Time

Tank 1A Results Summary

	Propellant Used (kg)	Propellant Vented (kg)	Final Average Wall Temp (K)	Time (s)
Case 2	36.5	27.3	99.0	1500
Case 3	18.5	15.5	184.0	1500
Case 4	21.8	15.5	167.9	1500

Efficiency Parameters

Mass Transfered-Mas Vented Mass Transfered Propellant Efficiency=

 $\label{eq:massVented x nvap} \begin{array}{l} \textit{MassVented x nvap} \\ \hline \textit{Tank Wall Mass x Specific Heat x Change in Temperature of Tank Wall} \end{array}$

 $\Delta T \ Factor = T_{Wall,final} - T_{sat,inlet}$

Propellant Efficiency			Thermal Efficiency			Delta T Factor (K)			
Tank									
	Case 2	Case 3	Case 4	Case 2	Case 3	Case 4	Case 2	Case 3	Case 4
1A	41.5%	20.6%	42.3%	43.8%	43.3%	48.0%	10	23.3	38.3
2A	25.2%	16.2%	28.9%	61.0%	60.6%	65.7%	21.8	106.8	80.7

- Case 3 has lowest propellant/thermal efficiency for both tanks
- Tank 1A has similar propellant thermal/efficiency whereas Tank 2A has significantly higher thermal efficiency
- Delta T factor is most important parameter in determining if tank can be successfully filled after chilldown
 - Tank 1A always has lower Delta T Factor than 2A
 - Case 2 always has lower Delta T Factor than Case 4

	Propellant Efficiency			Thermal Efficiency			Delta T Factor (K)		
Tank									
	Case 2	Case 3	Case 4	Case 2	Case 3	Case 4	Case 2	Case 3	Case 4
2A	25.2%	16.2%	28.9%	61.0%	60.6%	65.7%	21.8	106.8	80.7
2B	19.4%	14.0%	26.2%	62.3%	61.7%	67.0%	107.2	157.7	148.2

- Case 3 has again lowest propellant/thermal efficiency for both tanks
- Both tanks have similar propellant/thermal efficiencies
- Delta T factor is most important parameter in determining if tank can be successfully filled after chilldown
 - Tank 2A has lower Delta T factor than Tank 2B for all cases

- For parabolic flight pattern, the recommended tank size for an elliptical dome tank is closer to the size of Tank 1A (0.225 m³) rather than Tank 2A (0.904 m³)
- Thin-walled tank (3/16") has higher propellant and thermal efficiency than thick-walled tank (3/8")
- Thin-walled tank similar in size to Tank 1A is recommended for parabolic flight chilldown
 - Case 2 chilldown procedure (Charge: 20s/ Hold: 25s / Vent: 20s with a 100gps flow rate) recommended for this tank size

Future Work

- Further narrow down tank size and wall thickness
 - Test rig size
 - Maximize efficiency parameters
- Use of other injectors besides dip tube for chilldown