Skip to main content

Publications

This page provides a filter system to help users find publication files in our library. Clicking on any title in the list will expand the view, displaying a description, link, and keyword tags.

Use the filters on the left to narrow the list based on what you are interested in. Additionally you can use the keyword search field below to search on tags, titles, and content. Note that clicking on a tag under a title will also search for other similarly tagged items on our site such as recorded videos.

Extending the Capabilities of Thermal Desktop with the OpenTD Application Programming Interface

With the release of Thermal Desktop 6.0, users now had the ability to interface with some of the many elements and constructs of a Thermal Desktop model through external applications developed using the TD API (Application Programming Interface). This file allows applications to be developed in the .NET framework and interface to a number of object types within a Thermal Desktop model. The release of 6.1 expands the subset of objects able to be manipulated and now includes the raw geometrical information of surfaces. With the release of 6.1, the API was now referred to as OpenTD. This paper discusses some of the utilities and capabilities developed using the OpenTD API at the NASA Goddard Space Flight Center. These include utilities to help with configuration control of models and case sets, addition of logic to better process heater performance, and a methodology implemented to allow for submodel level processing of radiation couplings to include smaller radks where needed in a cryogenic region without using the same criteria for the warmer portions of the model. This last utility is targeting a reduction in run time without sacrificing accuracy. Lastly, some lessons learned, work-arounds, and wishes for the next release of the OpenTD API are also presented.

Publication: ICES-2020-297.pdf

Source: ICES

Author: Hume L. Peabody

Year: 2020

Content Tags: third-party software, OpenTD, heater, Monte Carlo, ray tracing, orbital heating, surface properties, parametric, parameterize, optical properties, thermophysical properties, symbols, absorptivity, mli, multi-layer insulation, case set manager, API

Passive Thermal Control Design Methods, Analysis, Comparison, and Evaluation for Micro and Nanosatellites Carrying Infrared Imager

Advancements in satellite technologies are increasing the power density of electronics and payloads. When the power consumption increases within a limited volume, waste heat generation also increases and this necessitates a proper and efficient thermal management system. Mostly, micro and nanosatellites use passive thermal control methods because of the low cost, no additional power requirement, ease of implementation, and better thermal performance. Passive methods lack the ability to meet certain thermal requirements on larger and smaller satellite platforms. This work numerically studies the performance of some of the passive thermal control techniques such as thermal straps, surface coatings, multi-layer insulation (MLI), and radiators for a 6U small satellite configuration carrying a mid-wave infrared (MWIR) payload whose temperature needs to be cooled down to 100K. Infrared (IR) imagers require low temperature, and the level of cooling is entirely dependent on the infrared wavelengths. These instruments are used for various applications including Earth observations, defence, and imaging at IR wavelengths. To achieve these low temperatures on such instruments, a micro-cryocooler is considered in this study. Most of the higher heat dissipating elements in the satellite are mounted to a heat exchanger plate, which is thermally coupled to an external radiator using thermal straps and heat pipes. The effects of the radiator size, orbital inclinations, space environments, satellite attitude with respect to the sun, and surface coatings are discussed elaborately for a 6U satellite configuration.

Publication: applsci-12-02858.pdf

Source: Applied Sciences, 2022, 12(6), 2858

Author: Shanmugasundaram Selvadurai, Amal Chandran, David Valentini, and Bret Lamprecht

Year: 2022

Content Tags: mli, multi-layer insulation, surface elements, surface coating a mesh, radiator, phase change material, thermocouples, finite element, finite elements, convergence, material properties, properties, CCHP

Integrated Analysis of Thermal/Structural/Optical Systems

Productivity bottlenecks for integrated thermal, structural, and optical design activities were identified and systematically eliminated, making possible automated exchange of design information between different engineering specialties.

The problems with prior approaches are summarized, then the implementation of the corresponding solutions is documented. Although the goal of this project was the automated evaluation of coupled thermal/optical/structural designs, significant process improvements were achieved for subset activities such as stand-alone thermal, thermal/ structural, and structural/optical design analysis.

Publication: optiOpt-ICES2002a.pdf

Source: Semi-Therm

Author: B. Cullimore, T. Panczak, J. Baumann, Dr. Victor Genberg, Mark Kahan

Year: 2002

Content Tags: finite element, finite elements, finite difference, parametric, conductance, contact conductance, design optimization, robust design, optical, registers, radiation, dynamic SINDA, dynamic mode

Automated Multidisciplinary Optimization of a Space-based Telescope

Automated design space exploration was implemented and demonstrated in the form of the multidisciplinary optimization of the design of a space-based telescope.

Off-the-shelf software representing the industry standards for thermal, structural, and optical analysis were employed. The integrated thermal/structural/optical models were collected and tasked with finding an optimum design using yet another off-the-shelf program. Using this integrated tool, the minimum mass thermal/structural design was found that directly satisfied optical performance requirements without relying on derived requirements such as isothermality and mechanical stability. Overdesign was therefore avoided, and engineering productivity was greatly improved.

This ambitious project was intended to be a pathfinder for integrated design activities. Therefore, difficulties and lessons learned are presented, along with recommendations for future investigations.

Publication: optiOpt-ICES2002b.pdf

Source: ICES

Author: B. Cullimore, T. Panczak, J. Baumann

Year: 2002

Content Tags: concurrent engineering, design optimization, parametric, robust design, design variables

Thermoelastic Analysis in Design

This study explores the capability of Thermal Desktop to map temperatures from a thermal model to a Nastran model to evalautate thermal stress and distortion

Publication: bell_thermoelastic.pps

Source: Aerospace Thermal Control Workshop

Author: William Bell & Paul-W. Young

Year: 2005

Content Tags: chilldown, thermal stress, third-party software, convection heat transfer, walls, heat flux, convergence, temperature map, temperature mapping, finite element, finite elements, material properties, heat pipe, heatpipe, pipes

JWST Testing Issues – Thermal & Structural

This study explores JWST thermal and structural testing issues and possible solutions, as presented to NASA in June 2004

Publication: bell_telescope.pps

Source: Aerospace Thermal Control Workshop 2005

Author: William Bell, Frank Kudirka, & Paul-W. Young

Year: 2005

Content Tags: chilldown, refrigeration cycle, convection heat transfer, insulation, radiation, flow regime mapping, radiation analysis groups

Free Molecular Heat Transfer Programs for Setup and Dynamic Updating the Conductors in Thermal Desktop

Thermal Desktop has the capability of modeling free molecular heat transfer (FMHT), but limitations are observed when working with large models during transient operation. To overcome this limitation, a MatLab program was developed that processes the Thermal Desktop free molecular conductors. It sets up the logic and arrays for the Thermal Desktop GUI used by SINDA/FLUINT. The theory of free molecular heating is presented along with the process required to setup the conductors, arrays, logic and Fortran subroutines for FMHT modeling in Thermal Desktop.

Publication: TFAWS07-1013.pdf

Source: TFAWS

Author: Eric T. Malroy

Year: 2007

Content Tags: transient, third-party software, user-defined Fortran array, radiation analysis groups, surface elements, radiation, radiation calculations, case set manager, user-defined Fortran arrays (UDFAs), submodels, radks

Collaborative design and analysis of Electro-Optical sensors

Complex products are best developed in a collaborative design environment where engineering data and CAD/CAE results can be shared across engineering discipline boundaries within a common software interface. A new software tool that allows Electro-Optical (EO) sensors to be developed in this manner has been used to conduct an integrated Structural/Thermal/Optical (STOP) analysis of a critical lens subassembly in a flight payload. This paper provides a description of the software environment and a summary of the technical results that were produced with it.

Publication: SPIE_August2009_Collaborative_Design_of_EO_Sensors_final.pdf

Source: The Aerospace Corporation

Author: Jason Geis, Jeff Lang, Leslie Peterson, Francisco Roybal, David Thomas

Year: 2009

Content Tags: concurrent engineering, concurrent design, third-party software, mesh, finite element, mashing, parametric, material properties, optical properties, boundary conditions, conductance, structural, thermocouples, transient

Analysis of Post-reentry Heating and Soak-back Affects in Unsealed Reentry Vehicles

Maintaining low temperature payloads through atmospheric reentry and ground recovery is becoming a larger focus in the space program as work in biology, cryogenic and other temperature dependent sciences becomes a higher goal on the International Space Station (ISS) and extraterrestrial surfaces. Paragon analyzes reentry system thermal control, particularly technology regarding small thermally controlled payloads anticipated for use in sample return from the International Space Station.

To minimize system mass and utilize the powerful insulative properties of a hard space vacuum the internal cavity of a small reentry vehicle can be left open. Thermally this causes concern during reentry, as even at very high altitudes there is enough pressure to cause a significant impact on insulation stratagems, such as MLI that rely on a high vacuum. At lower altitudes the vehicle is moving much slower, so the intense heat load of reentry is finished but soak-back from outer heated surfaces to the payload is a significant issue when air is present to facilitate heat transfer between layers. Initial assumptions that the cold temperatures of the upper atmosphere would cause a net cooling affect in the post-reentry times were overturned by a simple analysis set done in Thermal Desktop involving worst and best case scenarios as air starts to enter the vehicle. Additionally, CFD low pressure zones were shown to exist behind the vehicle where it is open to the atmosphere when the vehicle is travelling at extreme reentry speeds. These pressures are not so low however to prevent air from entering the vehicle. The impacts of this now apparent soak back, during the last phases of an atmospheric reentry were investigated leading to the conclusion that analyses of lower atmospheric portions of a reentry are critical to reentry studies and significantly changed the results.

An updated design is theorized using the knowledge gained from the preliminary studies called the Cryogenic Extended Duration and Reentry Thermal Control System (CEDR TCS) and the design is fully passive making it a low-complexity, zero-power system that does not necessitate the use of any consumables. The CEDR TCS uses a two-way pressure relief valve or “breather valve” that would allow the pressures inside and outside the vehicle to equilibrate once a great enough pressure differential is applied. This will allow air to leave while the unit is in space vacuum and prevent air from coming in until much later in the re-entry after much of the reentry heat has had a chance to convect to the upper atmosphere. Through further analysis CEDR is hoped to display a capability of near cryogenic temperatures through an atmospheric reentry and long durations on the ground.

Publication: TFAWS2011-AE-005.pdf

Source: TFAWS

Author: Erika T. Bannon, Jared Leidich, Alex Walker

Year: 2011

Content Tags: mli, multi-layer insulation, heat loads, design optimization, CFD, transient, insulation, model correlation, phase change material, PCM, radiation, sink temperature, heat flux, radks, radiation analysis group, material properties

Optimization and Automated Data Correlation in the NASA Standard Thermal/Fluid System Analyzer

SINDA/FLUINT (Ref 1-7) is the NASA-standard heat transfer and fluid flow analyzer for thermal control systems. Because of its general formulation, it is also used in other aerospace specialties such as environmental control (ECLSS) and liquid propulsion, and in terrestrial industries such as electronics packaging, refrigeration, power generation, and transportation industries.

SINDA/FLUINT is used to design and simulate thermal/fluid systems that can be represented in networks corresponding to finite difference, finite element, and/or lumped parameter equations. In addition to conduction, convection, and radiation heat transfer, the program can model steady or unsteady single- and two-phase flow networks.

C&R’s SinapsPlus® is a complete graphical user interface (preand postprocessor) and interactive model debugging environment for SINDA/FLUINT (Ref 8, 9). SinapsPlus also supports the C language in addition to the traditional choice of Fortran for concurrently executed user logic.

This paper describes revolutionary advances in SINDA/FLUINT, the NASA-standard heat transfer and fluid flow analyzer, changing it from a traditional point-design simulator into a tool that can help shape preliminary designs, rapidly perform parametrics and sensitivity studies, and even correlate modeling uncertainties using available test data.

Innovations include the incorporation of a complete spreadsheet-like module that allows users to centralize and automate model changes, even while thermal/fluid solutions are in progress. This feature reduces training time by eliminating many archaic options, and encourages the performance of parametrics and other what-if analyses that help engineers develop an intuitive understanding of their designs and how they are modeled.

The more revolutionary enhancement, though, is the complete integration of a nonlinear programming module that enables users to perform formal design optimization tasks such as weight minimization or performance maximization. The user can select any number of design variables and may apply any number of arbitrarily complex constraints to the optimization. This capability also can be used to find the best fit to available test data, automating a laborious but important task: the correlation of modeling uncertainties such as optical properties, contact conductances, as-built insulation performance, natural convection coefficients, etc.

Finally, this paper presents an overview of related developments that, coupled with the optimization capabilities, further enhance the power of the whole package.

Publication: sfpaper.pdf

Source: IECEC

Author: Brent A. Cullimore

Year: 1998

Content Tags: design optimization, model correlation, parameterize, parametric, two-phase flow, two-phase, optical properties, submodels, registers, expression editor, user logic, concurrent engineering, concurrent design, dynamic mode, dynamic SINDA, specific heat, solver, constraint, slip flow, Phenomena, capillary systems, mixtures, working fluids, nonequilibrium, vapor compression, uncertainty, uncertainty analysis

Optimization, Data Correlation, and Parametric Analysis Features in SINDA/FLUINT Version 4.0

This paper describes revolutionary advances in SINDA/FLUINT, the NASA-standard heat transfer and fluid flow analyzer, changing it from a traditional point-design simulator into a tool that can help shape preliminary designs, rapidly perform parametrics and sensitivity studies, and even correlate modeling uncertainties using available test data.

Innovations include the incorporation of a complete spreadsheet-like module that allows users to centralize and automate model changes, even while thermal/fluid solutions are in progress. This feature reduces training time by eliminating many archaic options, and encourages the performance of parametrics and other what-if analyses that help engineers develop an intuitive understanding of their designs and how they are modeled.

The more revolutionary enhancement, though, is the complete integration of a nonlinear programming module that enables users to perform formal design optimization tasks such as weight minimization or performance maximization. The user can select any number of design variables and may apply any number of arbitrarily complex constraints to the optimization. This capability also can be used to find the best fit to available test data, automating a laborious but important task: the correlation of modeling uncertainties such as optical properties, contact conductances, as-built insulation performance, natural convection coefficients, etc.

Finally, this paper presents an overview of related developments that, coupled with the optimization capabilities, further enhance the power of the whole package.

Publication: sf981574.pdf

Source: ICES 1998

Author: Brent A. Cullimore

Year: 1998

Content Tags: design optimization, model correlation, parameterize, parametric, two-phase flow, two-phase, optical properties, submodels, registers, expression editor, user logic, concurrent engineering, concurrent design, dynamic mode, dynamic SINDA, specific heat, solver, constraint, slip flow, Phenomena, capillary systems, mixtures, working fluids, nonequilibrium, vapor compression, uncertainty, uncertainty analysis

Optimization and Automated Data Correlation

Optimization and Automated Data Correlation in the NASA Standard Thermal/Fluid System Analyzer

SINDA/FLUINT (Ref 1-7) is the NASA-standard heat transfer and fluid flow analyzer for thermal control systems. Because of its general formulation, it is also used in other aerospace specialties such as environmental control (ECLSS) and liquid propulsion, and in terrestrial industries such as electronics packaging, refrigeration, power generation, and transportation industries. SINDA/FLUINT is used to design and simulate thermal/fluid systems that can be represented in networks corresponding to finite difference, finite element, and/or lumped parameter equations. In addition to conduction, convection, and radiation heat transfer, the program can model steady or unsteady single- and two-phase flow networks. CRTech's SinapsPlus® is a complete graphical user interface (preand postprocessor) and interactive model debugging environment for SINDA/FLUINT (Ref 8, 9). SinapsPlus also supports the C language in addition to the traditional choice of Fortran for concurrently executed user logic. This paper describes revolutionary advances in SINDA/FLUINT, the NASA-standard heat transfer and fluid flow analyzer, changing it from a traditional point-design simulator into a tool that can help shape preliminary designs, rapidly perform parametrics and sensitivity studies, and even correlate modeling uncertainties using available test data. Innovations include the incorporation of a complete spreadsheet-like module that allows users to centralize and automate model changes, even while thermal/fluid solutions are in progress. This feature reduces training time by eliminating many archaic options, and encourages the performance of parametrics and other what-if analyses that help engineers develop an intuitive understanding of their designs and how they are modeled. The more revolutionary enhancement, though, is the complete integration of a nonlinear programming module that enables users to perform formal design optimization tasks such as weight minimization or performance maximization. The user can select any number of design variables and may apply any number of arbitrarily complex constraints to the optimization. This capability also can be used to find the best fit to available test data, automating a laborious but important task: the correlation of modeling uncertainties such as optical properties, contact conductances, as-built insulation performance, natural convection coefficients, etc. Finally, this paper presents an overview of related developments that, coupled with the optimization capabilities, further enhance the power of the whole package.

Publication: sfpaper.pdf

Source: IECEC 1998

Author: Brent A. Cullimore

Year: 1998

Content Tags:

Reliability Engineering and Robust Design: New Methods for Thermal/Fluid Engineering

Recent years have witnessed more improvement to the SINDA/FLUINT thermohydraulic analyzer than at any other time in its long history. These improvements have included not only expansions in analytic power, but also the additions of high-level modules that offer revolutions in thermal/ fluid engineering itself.

One such high-level module, “Reliability Engineering,” is described in this paper. Reliability Engineering means considering tolerances in design parameters, uncertainties in environments, uncertainties in application (e.g. usage scenarios), and variations in manufacturing as the stochastic phenomena that they are. Using this approach, the probability that a design will achieve its required performance (i.e., the reliability) is calculated, providing an assessment of risk or confidence in the design, and quantifying the amount of over- or under-design present.

The design to be evaluated for reliability will likely have been produced using traditional methods. Possibly, the design was generated using the Solver optimizer, another high-level module available in SINDA/FLUINT. Using design optimization, the user quantifies the goals that make one design better than another (mass, efficiency, etc.), and specifies the thresholds or requirements which render a given design viable or useless (exceeding a performance limit, etc.). SINDA/FLUINT then automatically searches for an optimal design.

Robust Design means factoring reliability into the development of the design itself: designing for a target reliability and thereby avoiding either costly over-design or dangerous under-design in the first place. Such an approach eliminates a deterministic stack-up of tolerances, worst-case scenarios, safety factors, and margins that have been the traditional approaches for treating uncertainties.

In any real system or product, heat transfer and fluid flow play a limited role: there are many other aspects to a successful design than the realm of thermal/fluids that is encompassed by SINDA/FLUINT. Therefore, this paper concludes with brief descriptions of methods for performing interdisciplinary design tasks.

Publication: releng1.pdf

Source: CRTech White Paper

Author: Brent A. Cullimore

Year: 2000

Content Tags: design optimization, reliability engineering, robust design, constraints, boundary conditions, concurrent design, concurrent engineering, batteries, flow control, orifices, radiator, registers, two-phase flow, solver, model correlation, dynamic SINDA, dynamic mode, variables, Monte Carlo, material properties, third-party software, uncertainty analysis, uncertainty

Beyond Point Design Evaluation

Publication: NewOsummary.pdf

Source: ASME

Author: Brent A. Cullimore

Year: 2001

Content Tags: model calibration, CFD, parametric, design optimization, design synthesis, Phenomena

Dealing with Uncertainties and Variations in Thermal Design

The major influence on the reliability of electronics is temperature, yet thermal/fluid modeling is plagued with uncertainties and unknowns. Nonetheless, if appropriate values of these unknown parameters are available for any specific electronics package, then its temperature response can be accurately predicted using modern thermal/fluid analysis tools.

Traditionally, uncertainties are dealt with by a combination of testing, safety factors or margins, and worst-case design scenarios. Analyses are performed iteratively in a repetitive “point design evaluation” mode. Computer-based design simulation tools have emphasized increasing detail and fidelity to physical phenomena, seemingly ignoring the fact that the inputs to these simulations are highly uncertain.

This paper describes both current and future methods of dealing with uncertainties in thermal engineering. It introduces advanced tools and alternative methodologies that can automate not only the quantification of reliability, but can also help synthesize designs on the basis of reliability. It advocates using rapid gains in computer speed not to increase the degree of detail in a model, but to help the engineer find a robust design by automating high-level design tasks.

Publication: IPACK2001-15516.pdf

Source: InterPack

Author: Brent A. Cullimore

Year: 2001

Content Tags: parameterize, parametric, contact conductance, design synthesis, Phenomena, robust design, design optimization, design variables, reliability engineering

Nonlinear Programming Applied to Calibrating Thermal and Fluid Models to Test Data (Semi-Therm 2002)

Nonlinear Programming Applied to Calibrating Thermal and Fluid Models to Test Data (Semi-Therm 2002)

Publication: calibrating.pdf

Source: Semi-Therm

Author: Jane Baumann, Brent Cullimore

Year: 2002

Content Tags: model calibration, model correlation, condenser, condensers, validation, design optimization, parametric

Automated Determination of Worst-case Design Scenarios

This paper describes readily available techniques for automating the search for worst-case (e.g., “hot case”, “cold case”) design scenarios using only modest computational resources. These methods not only streamline a repetitive yet crucial task, they usually produce better results.

The problems with prior approaches are summarized, then the improvements are demonstrated via a simplified example that is analyzed using various approaches. Finally, areas for further automation are outlined, including attacking the entire design problem at a higher-level.

Publication: WorstCase-ICES.pdf

Source: ICES

Author: B. Cullimore

Year: 2003

Content Tags: parametric, model correlation, design optimization, convergence

Customizable Multidiscipline Environments for Heat Transfer and Fluid Flow Modeling

Thankfully, the age of stand-alone fixed-input simulation tools is fading away in favor of more flexible and integrated solutions. “Concurrent engineering” once meant automating data translations between monolithic codes, but sophisticated users have demanded more native integration and more automated tools for designing, and not just evaluating point designs. Improvements in both interprocess communications technology and numerical solutions have gone a long way towards meeting those demands.

This paper describes a small slice of a larger on-going effort to satisfy current and future demands for integrated multidisciplinary tools that can be highly customized by end-users or by third parties. Specifically, the ability to integrate fully featured thermal/fluid simulations into Microsoft’s Excel™ and other software is detailed. Users are now able not only to prepare custom user interfaces, they can use these codes as portals that allow integration activities at a larger scale. Previous enabling technologies are first described, then examples and repercussions of current capabilities are presented, and finally in-progress and future technologies are listed.

Publication: COMAPI-ICES.pdf

Source: ICES

Author: B. Cullimore, S. G. Ring, J. Baumann

Year: 2004

Content Tags: parametric, parameterize, dynamic mode, dynamic SINDA, third-party software

Development of Cryogenic Capillary Pumped Loop

A cryogenic capillary pumped loop (CPL) has been developed, designed, fabricated and successfully demonstrated by test. Using no moving parts, the novel device is able to start from a supercritical state and cool a remote dissipation source to 80-90K. Design studies were conducted for integration requirements and component design optimization and prototype units were designed, fabricated and successfully tested with excellent results. The development included the miniaturization of CPL technology to allow heat acquisition from sources with a small footprint and direct integration to a cryocooler cold finger. Applications include the cooling of cryogenic electronics, sensors, and fuels. The technology possesses many advantages over cryogenic heat pipes including ground testability and mechanical isolation. Because of the CPLs ability to transport loads over a distance, cryocoolers can be located remotely from the detector (up to a meter away or across a gimbaled joint). In addition, it passively seeks the coldest rejection environment, allowing a single cryogenic CPL to enable switching between multiple passive cryogenic radiators. This work was performed under funding from NASA Goddard Space Flight Center.

Publication: IECEC98.pdf

Source: IECEC

Author: Jane Baumann, Brent Cullimore

Year: 1998

Content Tags: capillary pumped loop, CPL, CCPL, cryogenic, cooling loop, supercritical, start-up, design optimization, two-phase, heat loads, working fluids, evaporator, condenser, robust design, capillary systems, wicks, heat pipe, heatpipe

Noncondensible Gas, Mass, and Adverse Tilt Effects on the Start-up of Loop Heat Pipes

In recent years, loop heat pipe (LHP) technology has transitioned from a developmental technology to one that is flight ready. The LHP is considered to be more robust than capillary pumped loops (CPL) because the LHP does not require any preconditioning of the system prior to application of the heat load, nor does its performance become unstable in the presence of two-phase fluid in the core of the evaporator. However, both devices have a lower limit on input power: below a certain power, the system may not start properly. The LHP becomes especially susceptible to these low power start-ups following diode operation, intentional shut-down, or very cold conditions. These limits are affected by the presence of adverse tilt, mass on the evaporator, and noncondensible gas in the working fluid. Based on analytical modeling correlated to start-up test data, this paper will describe how the minimum power required to start the loop is increased due to the presence of mass, noncondensible gas, and adverse tilt. The end-product is a methodology for predicting a “safe start” design envelope for a given system and loop design.

Publication: 1999-01-.pdf

Source: ICES

Author: Jane Baumann, Brent Cullimore, Boris Yendler, Eva Buchan

Year: 1999

Content Tags: Loop Heat Pipe, LHP, noncondensable gas, start-up, heat loads, compensation chamber, condenser, condensers, evaporator, evaporators, thermoelectrics, two-phase, two-phase flow, transient, bayonet, heat transfer coefficient, model correlation

A Methodology for Enveloping Reliable Start-up of LHPs

The loop heat pipe (LHP) is known to have a lower limit on input power. Below this limit the system may not start properly creating the potential for critical payload components to overheat. The LHP becomes especially susceptible to these low power start-up failures following diode operation, intentional shut-down of the device, or very cold conditions. These limits are affected by the presence of adverse tilt, mass on the evaporator, and noncondensible gas in the working fluid. Based on analytical modeling correlated to startup test data, this paper will describe the key parameters driving this low power limit and provide an overview of the methodology for predicting a “safe start” design envelope for a given system and loop design. The amount of incipient superheat was found to be key to the enveloping procedure. Superheat levels have been observed to vary significantly based on evaporator design and even from unit to unit of identical designs. Statistical studies of superheat levels and active measures for limiting superheat should be addressed by both the hardware vendors and the system integrators.

Publication: AIAA2000-2285.PDF

Source: AIAA Thermophysics

Author: Jane Baumann, Brent Cullimore, Jay Ambrose, Eva Buchan, Brois Yendler

Year: 2000

Content Tags: Loop Heat Pipe, LHP, noncondensable gas, start-up, evaporator, wicks, parametric, Phenomena, working fluid, model correlation, parameter, heat loads, compensation chamber, transient, capillary systems

Propulsion Applications of the NASA Standard General Purpose Thermohydraulic Analyzer

The NASA standard tool for thermohydraulic analysis, SINDA/FLUINT, includes thermodynamic and hydrodynamic solutions specifically targeted at the growing demand for design and analysis of liquid propulsion systems. Applications in this field have included:

  • Helium pressurization system design
  • Cryogenic line chill-down transients
  • Regenerative nozzle cooling
  • Cryogenic turbomachinery chill-down transients
  • Hydrazine line filling
  • Feedline transients, including pogo suppression
  • Feedline anti-geyser design
  • Cryogenic tank pressurization and discharge, including thermal stratification, dissolved pressurant, and capillary liquid acquisition devices

Many organizations have previously used separate in-house tools specialized for each of the above applications. However, these organizations typically do not have the resources nor infrastructure to maintain these codes when cognizant engineers are lost, nor to modify and validate them for new vehicles or applications, nor to train new engineers on their use.

The use of a single general-purpose tool to encompass all such analyses offers not only solutions to the above problems, but also enables integrated analyses and the ability to communicate with vendors and customers.

Publication: propulse.pdf

Source: CRTech White Paper

Author: Brent A. Cullimore, Cynthia M. Beer, David A. Johnson

Year: 2000

Content Tags: chilldown, cryogenics, turbomachinery, register, registers, oxidizer tank, two-phase flow, cryogenic storage, nonequilibrium, valves, parametric, model correlation, solver, supercritical, mixtures, pressurant gas, orifices, compressors, user logic, choking, choked, nozzles, slip flow, liquid surface, interface, capillary systems, thermal stratification, stratified tanks, stratification

Viability of Loop Heat Pipes for Space Solar Power Applications

The primary thermal management issue associated with Space Solar Power (SSP) is the need to acquire, transport and reject waste heat loads, on the order of 3.8 GW, from the transmitter to remote radiator locations. Previous conceptual studies have focused on transporting these loads to large remote radiators. These concepts assumed the ability to transport the heat either passively or mechanical over large transport distances of 100 meters or more.

A recent study, Innovative Deployable Radiators (IDR) for Space Solar Power, focused directly on the thermal control issues. This study has produced new concepts which break the system into small clusters of radiators which have more reasonable transport lengths of 1-2 meters. This study considers a system based on the klystron conversion technologies with a system architecture based on cluster radiators located near the waste heat source. The study evaluated various fluids for use between 50 and 500°C to determine their viability for use in LHPs. The evaluation considered fluid properties in addition to material compatibility with traditional LHP wick and containment materials.

The results of this study have provided new insight regarding the feasibility and limitations of LHPs for Space Solar Power applications. New technology development areas have been identified for both traditional LHPs and liquid metal LHPs.

Publication: AIAA2001-3078.pdf

Source: AIAA

Author: Jane Baumann, Suraj Rawal

Year: 2001

Content Tags: radiator, LHP, Loop Heat Pipe, capillary pumped loop, CPL, noncondensable gas, evaporator, evaporators, condenser, condensers, working fluids, pressure drops

Guidelines for Modeling Capillary Two Phase Loops At the System Level

LHPs and CPLs are increasingly accepted as thermal control solutions for spacecraft, and they are being investigated for various terrestrial applications as well. For a potential user of these technologies, modeling at the system level has been difficult, to say the least, and concurrent engineering methods were non-existent. New methods are now available to address these needs and concurrent CAD methods result in fast and accurate model generation. These same tools can be used for system level modeling of heat pipes, both fixed conductance with or without noncondensible gas or variable conductance.

Historically the thermal/hydraulic modeling of LHP has been approached with either oversimplified, design specific spreadsheets, or detailed thermal hydraulic models developed by the advanced user or LHP developer. To model these devices properly, and consequently gain confidence in the technology, the user needs to be able to model the LHP at the system level without becoming “caught up” in detail. This does not imply that the intricacies of two-phase flow and heat transfer within the evaporator core and secondary wicks of LHPs and CPLs aren’t important; but they should be left to the developers and the effects of these details can easily be enveloped through a series of steady state analyses. The potential user of the technology should focus on developing quasi-steady analyses to perform worst-case enveloping estimates, statistical treatment of the uncertainties, and post-test calibrations for use in extrapolation to untestable conditions.  In a nutshell: if they are going to fly them, they’re first going to have to analyze them, integrated into their own vehicle model.

This presentation will identify important LHP and CPL design parameters and how they should be modeled in addition to outlining the criteria for developing a system level model using new concurrent CAD-based methods.

Publication: LHPmodelGuide.pps

Source: Aerospace Thermal Control Workshop

Author: Jane Baumann

Year: 2003

Content Tags: LHP, Loop Heat Pipe, compensation chamber, evaporator, evaporators, condenser, condensers, iface, capillary systems

FDM/FEM System-level Analysis of Heat Pipes and LHPs in Modern CAD Environments

Publication: aerospace2005heatpipes.pps

Source: Aerospace Thermal Control Workshop

Author: Brent Cullimore, Jane Baumann

Year: 2005

Content Tags: LHP, Loop Heat Pipe, radiation analysis groups, concurrent engineering, heat pipe, system-level modeling, noncondensable gas, VCHP, CCHP, wall, two-phase heat transfer, two-phase flow, condenser, condensers, evaporator, evaporators

Upper Stage Tank Thermodynamic Modeling Using SINDA/FLUINT

Modeling to predict the condition of cryogenic propellants in an upper stage of a launch vehicle is necessary for mission planning and successful execution. Traditionally, this effort was performed using custom, in-house proprietary codes, limiting accessibility and application. Phenomena responsible for influencing the thermodynamic state of the propellant have been characterized as distinct events whose sequence defines a mission. These events include thermal stratification, passive thermal control roll (rotation), slosh, and engine firing. This paper demonstrates the use of an off the shelf, commercially available, thermal/fluid-network code to predict the thermodynamic state of propellant during the coast phase between engine firings, i.e. the first three of the above identified events. Results of this effort will also be presented.

Publication: AIAA-2006-50513.pdf

Source: AIAA

Author: P. Schallhorn, D. Michael Campbell, Sukhdeep Chase, Jorge Piquero, Cindy Fortenberry, Xiaoyi Li, Lisa Grob

Year: 2006

Content Tags: Optimization, parametric, radiation, radiation analysis groups, conduction, evaporation, CFD, convergence, structural, heat flux, thermal stratification, register, two-phase, slosh, wall, splash

Upper Stage Tank Thermodynamic Modeling Using SINDA/FLUINT (Presentation)

Publication: TFAWS-08-1009_presentation.pdf

Source: TFAWS Short Course

Author: Paul Schallhorn, D. Michael Campbell, Sukhdeep Chase, Jorge Piquero, Cindy Fortenberry, Xiaoyi Li, Lisa Grob

Year: 2008

Content Tags: CFD, two-phase, slosh, thermal stratification, diffusion, boundary layer, twinned tanks, boiling

Integrating Thermal And Structural Analysis with Thermal Desktop

Structural and thermal engineers currently work independently of each other using unrelated tools, models, and methods. Without the ability to rapidly exchange design data and predicted performance, the achievement of the ideals of concurrent engineering is not possible.

Thermal codes have been unable to exploit the geometric information in structural models and the CAD design database, and do not facilitate transfer of temperature data to other discipline’s analysis models. This paper discusses the key features in Thermal Desktop for supporting integrated thermal/structural analysis. Approaches to thermal modeling in an integrated analysis environment are discussed along with Thermal Desktop's data mapping algorithm for exporting temperature data on to structural model grid points.

Publication: 99es-40.pdf

Source: ICES

Author: Tim Panczak, Mark J. Welch

Year: 1999

Content Tags: structural, finite elements, finite difference, structural mesh, temperature mapping, temperature map, concurrent engineering, concurrent design, radiation calculations, CAD geometry, postprocessing, orbit, orbital heating, radiation analysis groups, Monte Carlo, ray tracing, data mapper, solver

Automating Thermal Analysis with Thermal Desktop

Thermal analysis is typically executed with multiple tools in a series of separate steps for performing radiation analysis, generating conduction and capacitance data, and for solving temperatures. This multitude of programs often leads to many user files that become unmanageable with their multitude, and the user often looses track as to which files go with which cases. In addition to combining the output from multiple programs, current processes often involve the user inputting various hand calculations into the math model to account for MLI/Insulation and contact conductance between entities. These calculations are not only tedious to make, but users often forget to update them when the geometry is changed.

Several new features of Thermal Desktop are designed to automate some of the tedious tasks that thermal engineers now practice. To start with, Thermal Desktop is a single program that does radiation analysis, generates conduction/capacitance data and automates the building of a SINDA/FLUINT model to solve for temperatures. Some of these new features of Thermal Desktop are Radiation Analysis Groups, Property Aliases, MLI/Insulation Objects, Contact Conductance Objects, Model Browser, and the Case Set Manager.

This paper describes the application and benefits of Thermal Desktop along with other unique features used to automate the thermal analysis process.

Publication: tDesktop99.pdf

Source: ICES

Author: Mark J. Welch, Tim Panczak

Year: 1999

Content Tags: radiation analysis groups, property, alias, multi-layer insulation, mli, insulation, contact conductance, model browser, case set manager

Parametric Thermal Analysis and Optimization Using Thermal Desktop

Thermal analysis is typically performed using a point design approach, where a single model is analyzed one analysis case at a time. Changes to the system design are analyzed by updating the thermal radiation and conduction models by hand, which can become a bottleneck when attempting to adopt a concurrent engineering approach. This paper presents the parametric modeling features that have been added to Thermal DesktopTM to support concurrent engineering. The thermal model may now be characterized by a set of design variables that are easily modified to reflect system level design changes. Geometric features, optical and material properties, and orbital elements may all be specified using user-defined variables and expressions. Furthermore, these variables may be automatically modified by Thermal Desktop’s optimization capabilities in order to satisfy user-defined design goals, or for correlating thermal models to test data. By sharing the set of design variables among analysis models spanning multiple disciplines, further integrated analysis and design may be accomplished. The framework into which Thermal Desktop is embedded in order to support an integrated Thermal/Structural/Optical design, analysis, and optimization system is also presented.

Publication: 00ICES-266.pdf

Source: ICES

Author: Timothy D. Panczak, Brent A. Cullimore

Year: 2000

Content Tags: concurrent engineering, parametric, parameterize, register, registers, dynamic mode, dynamic SINDA, symbol manager, expression editor, expressions, design optimization, orbital heating, model correlation, solver, optical properties, heat pipes, symbol, variables, case set manager, properties, structural

Nonlinear Programming Applied to Thermal and Fluid Design Optimization

Historically, thermal/fluid modeling began as a means of validating and sometimes correcting passively cooled designs that had been proposed by nonspecialists in heat transfer and fluid flow. As dissipation fluxes have risen, and as air cooling reaches the limits of its usefulness, involvement of thermal engineers is required earlier in the design process. Thermal engineers are now commonly responsible for sizing and selecting active cooling components such as fans and heat sinks, and increasingly single and two-phase coolant loops.

Meanwhile, heat transfer and fluid flow design analysis software has matured, growing both in ease of use and in phenomenological modeling prowess. Unfortunately, most software retains a focus on point-design simulations and needs to do a better job of helping thermal engineers not only evaluate designs, but also investigate alternatives and even automate the search for optimal designs.

This paper shows how readily available nonlinear programming (NLP) techniques can be successfully applied to automating design synthesis activities, allowing the thermal engineer to approach the problem from a higher level of automation. This paper briefly introduces NLP concepts, and then demonstrates their application both to a simplified fin (extended surface) as well as a more realistic case: a finned heat sink.

Publication: Optimizing.pdf

Source: ITherm

Author: Brent A. Cullimore

Year: 2002

Content Tags: design optimization, parametric, design synthesis, design variables, variables, sink temperature

Highlights in thermal engineering at Carlo Gavazzi Space

Publication: 17th_EWTES_MOLINA_FREQUENCYDOMAIN.pdf

Source: 17th Workshop on Thermal and ECLS Software-ESTEC

Author: Marco Molina, Christian Vettore

Year: 2003

Content Tags: third-party software, radks, heating rates

A CAD-based Tool for FDM and FEM Radiation and Conduction Modeling

Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software.  Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models “by hand” or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems.

This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low-cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface-based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT is retained.

Publication: ices-98es-51.pdf

Source: ASME

Author: Tim Panczak, Steve Ring, Mark Welch

Year: 1997

Content Tags: finite element, finite difference, concurrent engineering, heater, heatpipe, heat pipe, radiation analysis groups, optical properties, Phenomena, refraction, scaffolding, CAD geometry, layers, expression editor, solver, mesh, mesher, structural mesh, ray tracing, boundary conditions, thermal stress, radiator, conductance, batteries, orbital heating, mli, multi-layer insulation, radks, articulation, articulating