Thermal Modeling of the OSIRIS-REx Camera Suite

Daniel Alfred, University of Arizona

OSIRIS-REx Camera SuiteOSIRIS-Rex is an asteroid sample return mission, led by scientists at the University of Arizona, that will send a spacecraft to a near-Earth asteroid for the purpose of collecting a sample and returning it to Earth for testing and analysis. The purpose of the mission is to collect a sample from a carbonaceous asteroid, named Bennu, that contains organic matter representative of what was present during the formation of the solar system. We also hope to better understand the origin of objects like Bennu. There are several scientific instruments placed on the spacecraft to help accomplish this mission, including the OSIRIS-REx Camera Suite (OCAMS), developed by engineers and scientists at the University of Arizona. OCAMS is comprised of three different visible light cameras (MapCam, SamCam, and PolyCam) which will acquire images of Bennu at ranges from 2 million km to a few meters from the surface. OCAMS will characterize the surface and shape of the asteroid and help locate and take images of the sample site and sample acquisition.

Thermal models of each of the three OCAMS cameras for the OSIRIS-REx mission were developed in Thermal Desktop and solved with SINDA/FLUINT. Since these models needed to be incorporated into a system-level spacecraft thermal model along with all of the other OSIRIS-REx instrument thermal models, each model had a node count limit of roughly 100 nodes. They were developed largely from the ground up, using mostly Thermal Desktop primitives and user-defined nodes. They were initially compared with detailed and independently-developed finite element models of the OCAMS cameras, and then correlated to thermal test data attained from Thermal Balance tests performed with OCAMS flight-like hardware.

Click here to learn more about the OCAMS thermal modeling

 

 

Simulating Tanks and Vessels (click to register)

Tuesday October 22, 9am MT (8am PT, 11am ET)

This webinar explains options for modeling partially-full tanks, cryostats, and other vessels using TD/FloCAD. Topics include phasic nonequilibrium ("twinned tanks"), initializing two-phase mixtures, Ports, and Compartments, HTP (enclosure) ties for heat transfer, and thermally-stratified tanks.

Prerequisite: Introduction to Two-phase Flow webinar

 

Pipeline Simulation Options (click to register)

Thursday October 24, 9am MT (8am PT, 11am ET)

This webinar covers options for modeling pipelines using FloCAD Pipes. Topics include the various Pipe form options including choices for walls and heat transfer, customization and initialization, Ports with Pipes, and various options for dealing with horizontal and vertical two-phase flows including chilldown and purging.

Prerequisite: Introduction to Two-phase Flow webinar