Free Training: All about Loop Heat Pipes

FloCAD model of a loop heat pipe

Since a significant portion of LHPs consists of simple tubing, they are more flexible and easier to integrate into thermal structures than their traditional linear cousins: constant conductance and variable conductance heat pipes (CCHPs, VCHPs). LHPs are also less constrained by orientation and able to transport more power. LHPs have been used successfully in many applications, and have become a proven tool for spacecraft thermal control systems.

However, LHPs are not simple, neither in the details of their evaporator and compensation chamber (CC) structures nor in their surprising range of behaviors. Furthermore, there are uncertainties in their performance that must be treated with safety factors and bracketing methods for design verification.

Fortunately, some of the authors of CRTech fluid analysis tools also happened to have been involved in the early days of LHP technology development, so it is no accident that Thermal Desktop ("TD") and FloCAD have the unique capabilities necessary to model LHPs. Some features are useful at a system level analysis (including preliminary design), and others are necessary to achieve a detailed level of simulation (transients, off-design, condenser gradients).

CRTech is offering a four-part webinar series on LHPs and approaches to modeling them. Each webinar is designed to be attended in the order they were presented. While the first webinar presumes little knowledge of LHPs or their analysis, for the last three webinars you are presumed to have a basic knowledge TD/FloCAD two-phase modeling.

Part 1 provides an overview of LHP operation and unique characteristics
Part 2 introduces system-level modeling of LHPs using TD/FloCAD.
Part 3 covers an important aspect of getting the right answers: back-conduction and core state variability.
Part 4 covers detailed modeling of LHPs in TD/FloCAD such that transient operations such as start-up, gravity assist, and thermostatic control can be simulated.

Thermal Desktop, RadCAD, and TD Direct in-class training

Date: April 9-12, 2019, 8:00 a.m. to 5:00 p.m., daily
Location: Lakewood, CO

Registration deadline: March 27, 2019

CRTech will be hosting introductory training for Thermal Desktop, RadCAD, and TD Direct. Lecture and hands-on tutorials introduce you to basic Thermal Desktop and RadCAD usage and provide practice building models and interpreting results. The class will also introduce you to the SpaceClaim CAD interface and advanced meshing tools in TD Direct. The specific location of the training will be provided upon registration.

Daily Schedule

Day 1 and 2: Introduction to Thermal Desktop and SINDA/FLUINT
Day 3: Introduction to RadCAD
Day 4: Introduction to TD Direct

To learn more about this class and to register, visit our Training Page.