Geostationary Lightning Mapper

Thermal and fluid flow analysis for GLMThe Geostationary Lightning Mapper (GLM) for the GOES-R spacecraft will provide continuous measurement of lightning (in-cloud, cloud-to-cloud, and cloud-to-ground) in the Western hemisphere from a geostationary orbit. The system will collect lightning location and frequency data to aid the forecasting of storm intensity.

The driving thermal requirement for the GLM thermal design was to keep the flocal plane array (FPA) at 25oC ±2oC for any operating radiator temperature between -10oC and +12oC. To achieve this goal, the system uses parallel, temperature-controlled, loop heat pipes (LHPs) located between the FPA interface and a remote radiator. Thermal Desktop and FloCAD were used to simulate transient circulation of the two-phase working fluid within the two LHPs and predict the temperature distribution across the condenser plate. It was also used to validate the method of temperature control for the LHP. Thermal Desktop and FloCAD were selected for the following reasons:

  • Simultaneously solve the flow momentum, energy, and mass conservation equations for the two-phase and single-phase fluid flow for each fluid lump and path separately as well as for the two fluid submodels.
  • Model heat transfer between the fluid and the structure (fluid convection).
  • Model system heat transfer: conductive (conduction in the condenser plate), and radiative (radiation between the environment to the LHP components).
  • Model the phase change heat transfer (evaporation and condensation).
  • FloCAD provides unique and proven tools for modeling LHPs.
  • The ability to model LHP startup transients.
  • The ability to assess load sharing between parallel LHPs.
  • The ability to easily correlate a model to test results.

Download the publication for more information on this system

 

flow regimes

Introduction to Two-phase Flow

September 24, 2-3pm MDT

This webinar introduces basic concepts in two-phase flow modeling including quality, void fraction, flow regimes, slip flow, pressure drops and accelerations, and heat transfer.

No knowledge of CRTech software is required. However, references to the corresponding FloCAD features will be made to assist users of that product.

Click here to register

Introductory FloCAD Training

Class times: September 5, 10, and 12, 2019, 9:00 am to 12:00 pm MDT daily
Cost: no charge (attendees must have an active support contract)

CRTech will be hosting introductory training for FloCAD (Flow Modeling in Thermal Desktop). This is our standard FloCAD class previously hosted in a classroom environment and now restructured for an online teaching environment.

The class will introduce single-phase fluid modeling concepts and how to build fluid models within the FloCAD work environment. Topics covered include an introduction to fluid modeling components, geometric versus non-geometric modeling options, working with FloCAD Pipes, solution control, and an introduction to path and pipe libraries.

The class will be broken into three two- to three-hour sessions held over a 3 day period. The format will be online lecture and demonstration with opportunities to ask questions. Hands-on lab work will be provided to students to work on after each session. To gain the most from this class, students are encouraged to attend all three sessions.

Prerequisites: Attendees must have basic working knowledge of Thermal Desktop as many of its base features will not be covered in this class but their usage is required for FloCAD.

Eligibility Requirement: This class is a service to our customers. All attendees must have an active support contract. If you are unsure of your support status, please contact CRTech.

Click here to register