Skip to main content

LHPs and CPLs are increasingly accepted as thermal control solutions for spacecraft, and they are being investigated for various terrestrial applications as well. For a potential user of these technologies, modeling at the system level has been difficult, to say the least, and concurrent engineering methods were non-existent. New methods are now available to address these needs and concurrent CAD methods result in fast and accurate model generation. These same tools can be used for system level modeling of heat pipes, both fixed conductance with or without noncondensible gas or variable conductance.

Historically the thermal/hydraulic modeling of LHP has been approached with either oversimplified, design specific spreadsheets, or detailed thermal hydraulic models developed by the advanced user or LHP developer. To model these devices properly, and consequently gain confidence in the technology, the user needs to be able to model the LHP at the system level without becoming “caught up” in detail. This does not imply that the intricacies of two-phase flow and heat transfer within the evaporator core and secondary wicks of LHPs and CPLs aren’t important; but they should be left to the developers and the effects of these details can easily be enveloped through a series of steady state analyses. The potential user of the technology should focus on developing quasi-steady analyses to perform worst-case enveloping estimates, statistical treatment of the uncertainties, and post-test calibrations for use in extrapolation to untestable conditions.  In a nutshell: if they are going to fly them, they’re first going to have to analyze them, integrated into their own vehicle model.

This presentation will identify important LHP and CPL design parameters and how they should be modeled in addition to outlining the criteria for developing a system level model using new concurrent CAD-based methods.

Upload Files
Source
Aerospace Thermal Control Workshop
Author
Jane Baumann