Active cooling technologies such as heat pipes, loop heat pipes (LHPs), thermosyphons, loop thermosyphons (LTSs), and pumped single- or two-phase coolant loops require specialized modeling treatment. However, these 1D ducted systems are largely overlooked in 3D thermal modeling tools. The increasing popularity of CFD and FEM models and generation of analysis data from 3D CAD data are strong trends in the thermal analysis community, but most software answering such demands has not provided linear modeling elements appropriate for the simulation of heat pipes and coolant loops.
This paper describes techniques whereby CAD line-drawing methods can be used to quickly generate 1D fluid models of heat pipes and coolant loops within a 3D thermal model. These arcs and lines can be attached intimately or via linear contact or saddle resistances to plates and other surfaces, whether those surfaces are modeled using thermal finite difference methods (FDM), or finite element methods (FEM), or combinations of both. The fluid lines can also be manifolded and customized as needed to represent complex heat exchangers and plumbing arrangements. Furthermore, the assumption of 1D flow can be combined with 2D/3D models of walls, including advanced methods of extruding a complex 2D cross-section along a curved or mitered centerline.
To demonstrate these concepts, several distinct examples are developed and discussed.